Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 125114 by bramlexs22 last updated on 08/Dec/20

 solve ∫ (dx/((x^3 −1)^2 )) ?

solvedx(x31)2?

Commented by liberty last updated on 08/Dec/20

Ostrogradsky′s method ( Prof sir MJS )

Ostrogradskysmethod(ProfsirMJS)

Answered by liberty last updated on 08/Dec/20

equation has the form ∫ (dx/((x^3 −1)^2 )) = ((ax^2 +bx+c)/(x^3 −1))+∫ ((ex^2 +fx+g)/(x^3 −1)) dx  differentiating both side we have  (1/((x^3 −1)^2 )) = (((x^3 −1)(2ax+b)−(ax^2 +bx+c)3x^2 )/((x^3 −1)^2 )) + ((ex^2 +fx+g)/(x^3 −1))                     equating the coefficients gives  e = 0 , a=0 , c=0 , b=−(1/3) , f=0 , g=−(2/3)  I= ∫(dx/((x^3 −1)^2 )) = ((−(1/3)x)/(x^3 −1)) + ∫ (((−2)/3)/(x^3 −1)) dx   = ((−x)/(3(x^3 −1)))+ ∫ [ ((−(2/9))/(x−1)) + (((2/9)x+(4/9))/(x^2 +x+1)) ]dx   = −(x/(3(x^3 −1)))−(2/9)ln ∣x−1∣ + (1/9)ln ∣x^2 +x+1∣   + ((2(√3))/9) arc tan (((2x+1)/( (√3)))) + c

equationhastheformdx(x31)2=ax2+bx+cx31+ex2+fx+gx31dxdifferentiatingbothsidewehave1(x31)2=(x31)(2ax+b)(ax2+bx+c)3x2(x31)2+ex2+fx+gx31equatingthecoefficientsgivese=0,a=0,c=0,b=13,f=0,g=23I=dx(x31)2=13xx31+23x31dx=x3(x31)+[29x1+29x+49x2+x+1]dx=x3(x31)29lnx1+19lnx2+x+1+239arctan(2x+13)+c

Commented by bramlexs22 last updated on 08/Dec/20

thank you sir

thankyousir

Commented by MJS_new last updated on 08/Dec/20

yesss!

yesss!

Commented by bramlexs22 last updated on 08/Dec/20

does anyone have a pdf file about this method

Commented by MJS_new last updated on 08/Dec/20

search for “Ostrogradski Method” on the  www, plenty of explanations...

searchforOstrogradskiMethodonthewww,plentyofexplanations...

Commented by Ar Brandon last updated on 08/Dec/20

well detailed��

Answered by mathmax by abdo last updated on 08/Dec/20

A =∫  (dx/((x^3 −1)^2 ))  let f(λ)=∫  (dx/(x^3 −λ^3 ))   (λ>0)  we have  f^′ (λ)=−∫  ((3λ^2 )/((x^3 −λ^3 )^2 )) dx ⇒∫  (dx/(x^3 −λ^3 ))=−(1/(3λ^2 ))f^′ (λ) and  ∫  (dx/(x^3 −1)) =−(1/3)f^′ (1)  let explicit f(λ)let x=λu ⇒  f(λ)=∫  ((λdu)/(λ^3 (u^3 −1))) =(1/λ^2 )∫  (du/(u^3 −1)) and  g(u)=(1/(u^3 −1))=(1/((u−1)(u^2  +u+1)))=(a/(u−1))+((bu+c)/(u^2  +u+1))  a=(1/3) ,lim_(u→+∞) uG(u)=0=a+b ⇒b=−(1/3)  g(o)=−1=−a+c ⇒c=−1+a=−1+(1/3)=−(2/3) ⇒  g(u)=(1/(3(u−1)))+((−(1/3)u−(2/3))/(u^2  +u+1))=(1/(3(u−1)))−(1/3)×((u+2)/(u^2  +u+1))  =(1/(3(u−1)))−(1/6)×((2u+1+3)/(u^2  +u+1)) ⇒∫ g(u)du=(1/3)ln∣u−1∣  −(1/6)ln(u^2  +u+1)−(1/2)∫  (du/((u+(1/2))^2 +(3/4)))(→u+(1/2)=((√3)/2)z) ⇒  ∫  (du/((u+(1/2))^2  +(3/4))) =((√3)/2)×(4/3)∫ (dz/(z^2  +1))=(2/( (√3)))arctan(((2u+1)/( (√3)))) ⇒  ∫ g(u)du =(1/3)ln∣u−1∣−(1/6)ln(u^2  +u+1)−(1/( (√3))) arctan(((2u+1)/( (√3))))+c  f(λ)=(1/λ^2 ){  (1/3)ln∣(x/λ)−1∣−(1/6)ln((x^2 /λ^2 )+(x/λ)+1)−(1/( (√3)))arctan(((((2x)/λ)+1)/( (√3))))+c ⇒  now its eazy to calculate f^′ (λ) and f^′ (1)...be continued...

A=dx(x31)2letf(λ)=dxx3λ3(λ>0)wehavef(λ)=3λ2(x3λ3)2dxdxx3λ3=13λ2f(λ)anddxx31=13f(1)letexplicitf(λ)letx=λuf(λ)=λduλ3(u31)=1λ2duu31andg(u)=1u31=1(u1)(u2+u+1)=au1+bu+cu2+u+1a=13,limu+uG(u)=0=a+bb=13g(o)=1=a+cc=1+a=1+13=23g(u)=13(u1)+13u23u2+u+1=13(u1)13×u+2u2+u+1=13(u1)16×2u+1+3u2+u+1g(u)du=13lnu116ln(u2+u+1)12du(u+12)2+34(u+12=32z)du(u+12)2+34=32×43dzz2+1=23arctan(2u+13)g(u)du=13lnu116ln(u2+u+1)13arctan(2u+13)+cf(λ)=1λ2{13lnxλ116ln(x2λ2+xλ+1)13arctan(2xλ+13)+cnowitseazytocalculatef(λ)andf(1)...becontinued...

Commented by mathmax by abdo last updated on 08/Dec/20

∫  (dx/((x^3 −λ^3 )^2 ))=−(1/(3λ^2 ))f^′ (λ) ⇒∫ (dx/((x^3 −1)^2 ))=−(1/3)f^′ (1)  (eror of typo)

dx(x3λ3)2=13λ2f(λ)dx(x31)2=13f(1)(eroroftypo)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com