Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 125133 by mnjuly1970 last updated on 08/Dec/20

             ... ◂advanced   calculus▶...        prove  that :::     Ω=∫_0 ^( 1) {((cos(log(x))−1)/(log(x)))}dx=((log(2))/2)        ...∗adopted from youtube∗...      ∗ ∗ youtube solution is not considered ∗ ∗

$$\:\:\:\:\:\:\:\:\:\:\:\:\:...\:\blacktriangleleft{advanced}\:\:\:{calculus}\blacktriangleright... \\ $$$$\:\:\:\:\:\:{prove}\:\:{that}\:::: \\ $$$$\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\mathrm{1}} \left\{\frac{{cos}\left({log}\left({x}\right)\right)−\mathrm{1}}{{log}\left({x}\right)}\right\}{dx}=\frac{{log}\left(\mathrm{2}\right)}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:...\ast{adopted}\:{from}\:{youtube}\ast...\:\:\: \\ $$$$\:\ast\:\ast\:{youtube}\:{solution}\:{is}\:{not}\:{considered}\:\ast\:\ast \\ $$$$\:\: \\ $$

Answered by mathmax by abdo last updated on 08/Dec/20

I=∫_0 ^1  ((cos(logx)−1)/(logx)) we do the chamgement logx=−t ⇒x=e^(−t)   I=∫_∞ ^0  ((cost−1)/(−t))(−e^(−t) )dt =−∫_0 ^∞  ((cost−1)/t)e^(−t) dt  let f(a) =∫_0 ^∞  ((cost−1)/t)e^(−at)  dt  with a>0  we have  f^′ (a)=−∫_0 ^∞  (cost−1)e^(−at) dt =−∫_0 ^∞  e^(−at) cost +∫_0 ^∞  e^(−at)  dt  but  ∫_0 ^∞  e^(−at) dt =[−(1/a)e^(−at) ]_0 ^∞  =(1/a)  ∫_0 ^∞  e^(−at) cost dt =Re(∫_0 ^∞  e^(−at+it) dt) snd  ∫_0 ^∞  e^((−a+i)t) dt =[(1/(−a+i))e^((−a+i)t) ]_0 ^∞  =((−1)/(a−i)){−1} =(1/(a−i))=((a+i)/(a^2  +1))  ⇒∫_0 ^∞  e^(−at) cost dt =(a/(a^2  +1)) ⇒f^′ (a)=−(a/(1+a^2 ))+(1/a) ⇒  f(a)=lna−(1/2)ln(1+a^2 )+C =ln((a/( (√(a^2 +1))))) +c  ∣f(a)∣≤(m/a)→0 (a→+∞) ⇒c=0 ⇒f(a)=ln((a/( (√(1+a^2 )))))  I =−f(1)=−ln((1/( (√2))))=ln((√2))=((ln(2))/2)

$$\mathrm{I}=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{cos}\left(\mathrm{logx}\right)−\mathrm{1}}{\mathrm{logx}}\:\mathrm{we}\:\mathrm{do}\:\mathrm{the}\:\mathrm{chamgement}\:\mathrm{logx}=−\mathrm{t}\:\Rightarrow\mathrm{x}=\mathrm{e}^{−\mathrm{t}} \\ $$$$\mathrm{I}=\int_{\infty} ^{\mathrm{0}} \:\frac{\mathrm{cost}−\mathrm{1}}{−\mathrm{t}}\left(−\mathrm{e}^{−\mathrm{t}} \right)\mathrm{dt}\:=−\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{cost}−\mathrm{1}}{\mathrm{t}}\mathrm{e}^{−\mathrm{t}} \mathrm{dt} \\ $$$$\mathrm{let}\:\mathrm{f}\left(\mathrm{a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{cost}−\mathrm{1}}{\mathrm{t}}\mathrm{e}^{−\mathrm{at}} \:\mathrm{dt}\:\:\mathrm{with}\:\mathrm{a}>\mathrm{0}\:\:\mathrm{we}\:\mathrm{have} \\ $$$$\mathrm{f}^{'} \left(\mathrm{a}\right)=−\int_{\mathrm{0}} ^{\infty} \:\left(\mathrm{cost}−\mathrm{1}\right)\mathrm{e}^{−\boldsymbol{\mathrm{a}}\mathrm{t}} \mathrm{dt}\:=−\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{−\boldsymbol{\mathrm{a}}\mathrm{t}} \mathrm{cost}\:+\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{−\boldsymbol{\mathrm{a}}\mathrm{t}} \:\mathrm{dt} \\ $$$$\mathrm{but}\:\:\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{−\boldsymbol{\mathrm{a}}\mathrm{t}} \mathrm{dt}\:=\left[−\frac{\mathrm{1}}{\boldsymbol{\mathrm{a}}}\mathrm{e}^{−\boldsymbol{\mathrm{a}}\mathrm{t}} \right]_{\mathrm{0}} ^{\infty} \:=\frac{\mathrm{1}}{\boldsymbol{\mathrm{a}}} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{−\boldsymbol{\mathrm{a}}\mathrm{t}} \mathrm{cost}\:\mathrm{dt}\:=\mathrm{Re}\left(\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{−\boldsymbol{\mathrm{a}}\mathrm{t}+\mathrm{it}} \mathrm{dt}\right)\:\mathrm{snd} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{\left(−\boldsymbol{\mathrm{a}}+\mathrm{i}\right)\mathrm{t}} \mathrm{dt}\:=\left[\frac{\mathrm{1}}{−\boldsymbol{\mathrm{a}}+\mathrm{i}}\mathrm{e}^{\left(−\boldsymbol{\mathrm{a}}+\mathrm{i}\right)\mathrm{t}} \right]_{\mathrm{0}} ^{\infty} \:=\frac{−\mathrm{1}}{\boldsymbol{\mathrm{a}}−\mathrm{i}}\left\{−\mathrm{1}\right\}\:=\frac{\mathrm{1}}{\boldsymbol{\mathrm{a}}−\mathrm{i}}=\frac{\boldsymbol{\mathrm{a}}+\boldsymbol{\mathrm{i}}}{\boldsymbol{\mathrm{a}}^{\mathrm{2}} \:+\mathrm{1}} \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{−\mathrm{at}} \mathrm{cost}\:\mathrm{dt}\:=\frac{\mathrm{a}}{\mathrm{a}^{\mathrm{2}} \:+\mathrm{1}}\:\Rightarrow\mathrm{f}^{'} \left(\mathrm{a}\right)=−\frac{\mathrm{a}}{\mathrm{1}+\mathrm{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{a}}\:\Rightarrow \\ $$$$\mathrm{f}\left(\mathrm{a}\right)=\mathrm{lna}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\left(\mathrm{1}+\mathrm{a}^{\mathrm{2}} \right)+\mathrm{C}\:=\mathrm{ln}\left(\frac{\mathrm{a}}{\:\sqrt{\mathrm{a}^{\mathrm{2}} +\mathrm{1}}}\right)\:+\mathrm{c} \\ $$$$\mid\mathrm{f}\left(\mathrm{a}\right)\mid\leqslant\frac{\mathrm{m}}{\mathrm{a}}\rightarrow\mathrm{0}\:\left(\mathrm{a}\rightarrow+\infty\right)\:\Rightarrow\mathrm{c}=\mathrm{0}\:\Rightarrow\mathrm{f}\left(\mathrm{a}\right)=\mathrm{ln}\left(\frac{\mathrm{a}}{\:\sqrt{\mathrm{1}+\mathrm{a}^{\mathrm{2}} }}\right) \\ $$$$\mathrm{I}\:=−\mathrm{f}\left(\mathrm{1}\right)=−\mathrm{ln}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right)=\mathrm{ln}\left(\sqrt{\mathrm{2}}\right)=\frac{\mathrm{ln}\left(\mathrm{2}\right)}{\mathrm{2}} \\ $$

Commented by mnjuly1970 last updated on 08/Dec/20

thank you so much  mr max .grateful....

$${thank}\:{you}\:{so}\:{much} \\ $$$${mr}\:{max}\:.{grateful}.... \\ $$

Commented by mathmax by abdo last updated on 08/Dec/20

you are welcome sir

$$\mathrm{you}\:\mathrm{are}\:\mathrm{welcome}\:\mathrm{sir} \\ $$

Answered by Dwaipayan Shikari last updated on 08/Dec/20

∫_0 ^1 ((cos(logx)−1)/(logx))dx  =∫_(−∞) ^0 e^t  ((cos(t)−1)/t) dt     logx=t⇒(1/x)=(dt/dx)             I(a)=2∫_0 ^∞ ((cost−1)/t)e^(−at) dt  I′(a)=−∫_0 ^∞ coste^(−at) +∫_0 ^∞ e^(−at) dt  =−(1/2)∫_0 ^∞ e^(−t(a−i)) +e^(−t(i+a)) dt +(1/a)  =−(1/2)((1/(a−i))+(1/(i+a)))+(1/a) =−(a/(a^2 +1))+(1/a)  I(a)=−(1/2)log(a^2 +1)+log(a)+C  a→∞  C=0  I(1)=(1/2)log(2)

$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{cos}\left({logx}\right)−\mathrm{1}}{{logx}}{dx} \\ $$$$=\int_{−\infty} ^{\mathrm{0}} {e}^{{t}} \:\frac{{cos}\left({t}\right)−\mathrm{1}}{{t}}\:{dt}\:\:\:\:\:{logx}={t}\Rightarrow\frac{\mathrm{1}}{{x}}=\frac{{dt}}{{dx}}\:\:\:\:\:\:\:\:\:\:\: \\ $$$${I}\left({a}\right)=\mathrm{2}\int_{\mathrm{0}} ^{\infty} \frac{{cost}−\mathrm{1}}{{t}}{e}^{−{at}} {dt} \\ $$$${I}'\left({a}\right)=−\int_{\mathrm{0}} ^{\infty} {coste}^{−{at}} +\int_{\mathrm{0}} ^{\infty} {e}^{−{at}} {dt} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} {e}^{−{t}\left({a}−{i}\right)} +{e}^{−{t}\left({i}+{a}\right)} {dt}\:+\frac{\mathrm{1}}{{a}} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{{a}−{i}}+\frac{\mathrm{1}}{{i}+{a}}\right)+\frac{\mathrm{1}}{{a}}\:=−\frac{{a}}{{a}^{\mathrm{2}} +\mathrm{1}}+\frac{\mathrm{1}}{{a}} \\ $$$${I}\left({a}\right)=−\frac{\mathrm{1}}{\mathrm{2}}{log}\left({a}^{\mathrm{2}} +\mathrm{1}\right)+{log}\left({a}\right)+{C} \\ $$$${a}\rightarrow\infty\:\:{C}=\mathrm{0} \\ $$$${I}\left(\mathrm{1}\right)=\frac{\mathrm{1}}{\mathrm{2}}{log}\left(\mathrm{2}\right) \\ $$$$ \\ $$

Commented by mnjuly1970 last updated on 08/Dec/20

bravo mr payan.thank you  so much..

$${bravo}\:{mr}\:{payan}.{thank}\:{you} \\ $$$${so}\:{much}.. \\ $$

Answered by mnjuly1970 last updated on 08/Dec/20

solution:   Ω=Re(∫_0 ^( 1) ((x^i −1)/(log(x)))dx)=Re(ln(1+i))  =Re(ln((√2) e^((iπ)/4) ))=Re[ln((√2) )+i(π/4)]    ∴  Ω =((ln(2))/2)   ✓

$${solution}: \\ $$$$\:\Omega={Re}\left(\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{x}^{{i}} −\mathrm{1}}{{log}\left({x}\right)}{dx}\right)={Re}\left({ln}\left(\mathrm{1}+{i}\right)\right) \\ $$$$={Re}\left({ln}\left(\sqrt{\mathrm{2}}\:{e}^{\frac{{i}\pi}{\mathrm{4}}} \right)\right)={Re}\left[{ln}\left(\sqrt{\mathrm{2}}\:\right)+{i}\frac{\pi}{\mathrm{4}}\right] \\ $$$$\:\:\therefore\:\:\Omega\:=\frac{{ln}\left(\mathrm{2}\right)}{\mathrm{2}}\:\:\:\checkmark \\ $$

Commented by mathmax by abdo last updated on 08/Dec/20

you are taking route 66 in america..!

$$\mathrm{you}\:\mathrm{are}\:\mathrm{taking}\:\mathrm{route}\:\mathrm{66}\:\mathrm{in}\:\mathrm{america}..! \\ $$

Commented by mnjuly1970 last updated on 08/Dec/20

  sincerely yours    m.n.1970

$$\:\:{sincerely}\:{yours}\: \\ $$$$\:{m}.{n}.\mathrm{1970} \\ $$

Commented by mnjuly1970 last updated on 09/Dec/20

   sir max   since :some integrals and problems   were solved many time  therefore  i tried  to shorten the solution.  example :    ln(a+1)=∫_0 ^( 1) (((x^a −1)/(ln(x))))dx ,....

$$\:\:\:{sir}\:{max} \\ $$$$\:{since}\::{some}\:{integrals}\:{and}\:{problems}\: \\ $$$${were}\:{solved}\:{many}\:{time}\:\:{therefore}\:\:{i}\:{tried} \\ $$$${to}\:{shorten}\:{the}\:{solution}. \\ $$$${example}\:: \\ $$$$\:\:{ln}\left({a}+\mathrm{1}\right)=\int_{\mathrm{0}} ^{\:\mathrm{1}} \left(\frac{{x}^{{a}} −\mathrm{1}}{{ln}\left({x}\right)}\right){dx}\:,.... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com