All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 125276 by Study last updated on 09/Dec/20
∫10x9−1lnxdx=???
Answered by Dwaipayan Shikari last updated on 09/Dec/20
I(a)=∫01xa−1logxdx⇒I′(a)=∫01xadx=1a+1I(a)=∫1a+1=log(a+1)+Ca=0C=0I(a)=log(a+1)⇒I(9)=log(10)
Answered by mathmax by abdo last updated on 09/Dec/20
I=∫01x9−1lnxdxchangementlnx=−tgivex=e−tI=−∫0∞e−9t−1−t(−e−t)dt=−∫0∞e−10t−e−ttdt=∫0∞e−t−e−10ttdtletf(x)=∫0∞e−t−e−10tte−xtdtwith[x>0f′(x)=−∫0∞(e−t−e−10t)e−xtdt=∫0∞(e−(x+10)t−e−(x+1)t)dt=[−1x+10e−(x+10)t+1x+1e−(x+1)t]0∞=1x+10−1x+1⇒f(x)=ln(x+10x+1)+Cduetocontinuity∃m>0/∣f(x)∣⩽m∫0∞e−xtdt=mx→0(x→+∞)⇒c=0⇒f(x)=ln(x+10x+1)andI=f(0)=ln(10)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com