Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 125295 by mr W last updated on 09/Dec/20

Commented by mr W last updated on 09/Dec/20

the small circle with radius 1 rolls  along the parabola y=x^2  as shown.  find the locus of the point A.

$${the}\:{small}\:{circle}\:{with}\:{radius}\:\mathrm{1}\:{rolls} \\ $$$${along}\:{the}\:{parabola}\:{y}={x}^{\mathrm{2}} \:{as}\:{shown}. \\ $$$${find}\:{the}\:{locus}\:{of}\:{the}\:{point}\:{A}. \\ $$

Answered by Olaf last updated on 09/Dec/20

Let M(t) =  (((x(t) = t)),((y(t) = t^2 )) )  l(t) = ∫_0 ^t (√(x′^2 (τ)+y′^2 (τ)))dτ  l(t) = ∫_0 ^t (√(1+4τ^2 ))dτ  Let τ = (1/2)sinhϕ  l(t) = ∫_0 ^(argsh(2t)) (√(1+sinh^2 ϕ)).(1/2)coshϕdϕ  l(t) = ∫_0 ^(argsh(2t)) (1/2)cosh^2 ϕdϕ  l(t) = ∫_0 ^(argsh(2t)) ((1+cosh(2ϕ))/4)dϕ  l(t) = (1/4)[ϕ+(1/2)sinh(2ϕ)]_0 ^(argsh(2t))   l(t) = (1/4)[ϕ+sinhϕcoshϕ]_0 ^(argsh(2t))   l(t) = (1/4)(argsh(2t)+2t(√(1+4t^2 )))  l(t) = (1/4)[ln(2t+(√(1+4t^2 )))+2t(√(1+4t^2 ))]  OA^(→) (t) = OM^(→) (t)+MA^(→) (t)  OA^(→) (t) =  ((t),(t^2 ) )+ (((rcos(θ(t)))),((rsin(θ(t)))) )  r = 1 and :  l(t) = rθ(t) = θ(t)  OA^(→) (t) =  (((t+cos[(1/4)(ln(2t+(√(1+4t^2 )))+2t(√(1+4t^2 )))])),((t^2 +sin[(1/4)(ln(2t+(√(1+4t^2 )))+2t(√(1+4t^2 )))])) )

$$\mathrm{Let}\:\mathrm{M}\left({t}\right)\:=\:\begin{pmatrix}{{x}\left({t}\right)\:=\:{t}}\\{{y}\left({t}\right)\:=\:{t}^{\mathrm{2}} }\end{pmatrix} \\ $$$${l}\left({t}\right)\:=\:\int_{\mathrm{0}} ^{{t}} \sqrt{{x}'^{\mathrm{2}} \left(\tau\right)+{y}'^{\mathrm{2}} \left(\tau\right)}{d}\tau \\ $$$${l}\left({t}\right)\:=\:\int_{\mathrm{0}} ^{{t}} \sqrt{\mathrm{1}+\mathrm{4}\tau^{\mathrm{2}} }{d}\tau \\ $$$$\mathrm{Let}\:\tau\:=\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sinh}\varphi \\ $$$${l}\left({t}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{argsh}\left(\mathrm{2}{t}\right)} \sqrt{\mathrm{1}+\mathrm{sinh}^{\mathrm{2}} \varphi}.\frac{\mathrm{1}}{\mathrm{2}}\mathrm{cosh}\varphi{d}\varphi \\ $$$${l}\left({t}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{argsh}\left(\mathrm{2}{t}\right)} \frac{\mathrm{1}}{\mathrm{2}}\mathrm{cosh}^{\mathrm{2}} \varphi{d}\varphi \\ $$$${l}\left({t}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{argsh}\left(\mathrm{2}{t}\right)} \frac{\mathrm{1}+\mathrm{cosh}\left(\mathrm{2}\varphi\right)}{\mathrm{4}}{d}\varphi \\ $$$${l}\left({t}\right)\:=\:\frac{\mathrm{1}}{\mathrm{4}}\left[\varphi+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sinh}\left(\mathrm{2}\varphi\right)\right]_{\mathrm{0}} ^{\mathrm{argsh}\left(\mathrm{2}{t}\right)} \\ $$$${l}\left({t}\right)\:=\:\frac{\mathrm{1}}{\mathrm{4}}\left[\varphi+\mathrm{sinh}\varphi\mathrm{cosh}\varphi\right]_{\mathrm{0}} ^{\mathrm{argsh}\left(\mathrm{2}{t}\right)} \\ $$$${l}\left({t}\right)\:=\:\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{argsh}\left(\mathrm{2}{t}\right)+\mathrm{2}{t}\sqrt{\mathrm{1}+\mathrm{4}{t}^{\mathrm{2}} }\right) \\ $$$${l}\left({t}\right)\:=\:\frac{\mathrm{1}}{\mathrm{4}}\left[\mathrm{ln}\left(\mathrm{2}{t}+\sqrt{\mathrm{1}+\mathrm{4}{t}^{\mathrm{2}} }\right)+\mathrm{2}{t}\sqrt{\mathrm{1}+\mathrm{4}{t}^{\mathrm{2}} }\right] \\ $$$$\overset{\rightarrow} {\mathrm{OA}}\left({t}\right)\:=\:\overset{\rightarrow} {\mathrm{OM}}\left({t}\right)+\overset{\rightarrow} {\mathrm{MA}}\left({t}\right) \\ $$$$\overset{\rightarrow} {\mathrm{OA}}\left({t}\right)\:=\:\begin{pmatrix}{{t}}\\{{t}^{\mathrm{2}} }\end{pmatrix}+\begin{pmatrix}{{r}\mathrm{cos}\left(\theta\left({t}\right)\right)}\\{{r}\mathrm{sin}\left(\theta\left({t}\right)\right)}\end{pmatrix} \\ $$$${r}\:=\:\mathrm{1}\:\mathrm{and}\:: \\ $$$${l}\left({t}\right)\:=\:{r}\theta\left({t}\right)\:=\:\theta\left({t}\right) \\ $$$$\overset{\rightarrow} {\mathrm{OA}}\left({t}\right)\:=\:\begin{pmatrix}{{t}+\mathrm{cos}\left[\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{ln}\left(\mathrm{2}{t}+\sqrt{\mathrm{1}+\mathrm{4}{t}^{\mathrm{2}} }\right)+\mathrm{2}{t}\sqrt{\mathrm{1}+\mathrm{4}{t}^{\mathrm{2}} }\right)\right]}\\{{t}^{\mathrm{2}} +\mathrm{sin}\left[\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{ln}\left(\mathrm{2}{t}+\sqrt{\mathrm{1}+\mathrm{4}{t}^{\mathrm{2}} }\right)+\mathrm{2}{t}\sqrt{\mathrm{1}+\mathrm{4}{t}^{\mathrm{2}} }\right)\right]}\end{pmatrix} \\ $$

Answered by mr W last updated on 09/Dec/20

Commented by mr W last updated on 10/Dec/20

P(t,t^2 )  s=OP^(⌢) =∫_0 ^t (√(1+(2x)^2 ))dx  =(1/4)[ln (2x+(√(1+4x^2 )))+2x(√(1+4x^2 ))]_0 ^t   =(1/4)[ln (2t+(√(1+4t^2 )))+2t(√(1+4t^2 ))]  s=PA^(⌢) =rϕ=1×ϕ  ⇒ϕ=(1/4)[ln (2t+(√(1+4t^2 )))+2t(√(1+4t^2 ))]    tan θ=(dy/dx)=2t   ⇒sin θ=((2t)/( (√(1+4t^2 )))), cos θ=(1/( (√(1+4t^2 ))))    rotation of circle:  φ=θ+ϕ=tan^(−1) (2t)+(1/4)[ln (2t+(√(1+4t^2 )))+2t(√(1+4t^2 ))]    x_A =t+1×sin θ−1×sin (θ+ϕ)  =t+sin θ (1−cos ϕ)−cos θ sin ϕ  =t+((2t)/( (√(1+4t^2 )))) (1−cos ϕ)−(1/( (√(1+4t^2 )))) sin ϕ    y_A =t^2 −1×cos θ+1×cos (θ+ϕ)  =t^2 −cos θ(1−cos ϕ)−sin θ sin ϕ  =t^2 −(1/( (√(1+4t^2 ))))(1−cos ϕ)−((2t)/( (√(1+4t^2 ))))sin ϕ    A: { ((x=t+((2t(1−cos ϕ)−sin ϕ)/( (√(1+4t^2 )))))),((y=t^2 −((1−cos ϕ+2t sin ϕ)/( (√(1+4t^2 )))))) :}    general case:  ϕ=(1/(4r))[ln (2t+(√(1+4t^2 )))+2t(√(1+4t^2 ))]  x_A =t+((2t(r−l cos ϕ)− l sin ϕ)/( (√(1+4t^2 ))))  y_A =t^2 −((r−l cos ϕ+ 2t l sin ϕ)/( (√(1+4t^2 ))))

$${P}\left({t},{t}^{\mathrm{2}} \right) \\ $$$${s}=\overset{\frown} {{OP}}=\int_{\mathrm{0}} ^{{t}} \sqrt{\mathrm{1}+\left(\mathrm{2}{x}\right)^{\mathrm{2}} }{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\left[\mathrm{ln}\:\left(\mathrm{2}{x}+\sqrt{\mathrm{1}+\mathrm{4}{x}^{\mathrm{2}} }\right)+\mathrm{2}{x}\sqrt{\mathrm{1}+\mathrm{4}{x}^{\mathrm{2}} }\right]_{\mathrm{0}} ^{{t}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\left[\mathrm{ln}\:\left(\mathrm{2}{t}+\sqrt{\mathrm{1}+\mathrm{4}{t}^{\mathrm{2}} }\right)+\mathrm{2}{t}\sqrt{\mathrm{1}+\mathrm{4}{t}^{\mathrm{2}} }\right] \\ $$$${s}=\overset{\frown} {{PA}}={r}\varphi=\mathrm{1}×\varphi \\ $$$$\Rightarrow\varphi=\frac{\mathrm{1}}{\mathrm{4}}\left[\mathrm{ln}\:\left(\mathrm{2}{t}+\sqrt{\mathrm{1}+\mathrm{4}{t}^{\mathrm{2}} }\right)+\mathrm{2}{t}\sqrt{\mathrm{1}+\mathrm{4}{t}^{\mathrm{2}} }\right] \\ $$$$ \\ $$$$\mathrm{tan}\:\theta=\frac{{dy}}{{dx}}=\mathrm{2}{t}\: \\ $$$$\Rightarrow\mathrm{sin}\:\theta=\frac{\mathrm{2}{t}}{\:\sqrt{\mathrm{1}+\mathrm{4}{t}^{\mathrm{2}} }},\:\mathrm{cos}\:\theta=\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\mathrm{4}{t}^{\mathrm{2}} }} \\ $$$$ \\ $$$${rotation}\:{of}\:{circle}: \\ $$$$\phi=\theta+\varphi=\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{2}{t}\right)+\frac{\mathrm{1}}{\mathrm{4}}\left[\mathrm{ln}\:\left(\mathrm{2}{t}+\sqrt{\mathrm{1}+\mathrm{4}{t}^{\mathrm{2}} }\right)+\mathrm{2}{t}\sqrt{\mathrm{1}+\mathrm{4}{t}^{\mathrm{2}} }\right] \\ $$$$ \\ $$$${x}_{{A}} ={t}+\mathrm{1}×\mathrm{sin}\:\theta−\mathrm{1}×\mathrm{sin}\:\left(\theta+\varphi\right) \\ $$$$={t}+\mathrm{sin}\:\theta\:\left(\mathrm{1}−\mathrm{cos}\:\varphi\right)−\mathrm{cos}\:\theta\:\mathrm{sin}\:\varphi \\ $$$$={t}+\frac{\mathrm{2}{t}}{\:\sqrt{\mathrm{1}+\mathrm{4}{t}^{\mathrm{2}} }}\:\left(\mathrm{1}−\mathrm{cos}\:\varphi\right)−\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\mathrm{4}{t}^{\mathrm{2}} }}\:\mathrm{sin}\:\varphi \\ $$$$ \\ $$$${y}_{{A}} ={t}^{\mathrm{2}} −\mathrm{1}×\mathrm{cos}\:\theta+\mathrm{1}×\mathrm{cos}\:\left(\theta+\varphi\right) \\ $$$$={t}^{\mathrm{2}} −\mathrm{cos}\:\theta\left(\mathrm{1}−\mathrm{cos}\:\varphi\right)−\mathrm{sin}\:\theta\:\mathrm{sin}\:\varphi \\ $$$$={t}^{\mathrm{2}} −\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\mathrm{4}{t}^{\mathrm{2}} }}\left(\mathrm{1}−\mathrm{cos}\:\varphi\right)−\frac{\mathrm{2}{t}}{\:\sqrt{\mathrm{1}+\mathrm{4}{t}^{\mathrm{2}} }}\mathrm{sin}\:\varphi \\ $$$$ \\ $$$${A}:\begin{cases}{{x}={t}+\frac{\mathrm{2}{t}\left(\mathrm{1}−\mathrm{cos}\:\varphi\right)−\mathrm{sin}\:\varphi}{\:\sqrt{\mathrm{1}+\mathrm{4}{t}^{\mathrm{2}} }}}\\{{y}={t}^{\mathrm{2}} −\frac{\mathrm{1}−\mathrm{cos}\:\varphi+\mathrm{2}{t}\:\mathrm{sin}\:\varphi}{\:\sqrt{\mathrm{1}+\mathrm{4}{t}^{\mathrm{2}} }}}\end{cases} \\ $$$$ \\ $$$${general}\:{case}: \\ $$$$\varphi=\frac{\mathrm{1}}{\mathrm{4}{r}}\left[\mathrm{ln}\:\left(\mathrm{2}{t}+\sqrt{\mathrm{1}+\mathrm{4}{t}^{\mathrm{2}} }\right)+\mathrm{2}{t}\sqrt{\mathrm{1}+\mathrm{4}{t}^{\mathrm{2}} }\right] \\ $$$${x}_{{A}} ={t}+\frac{\mathrm{2}{t}\left({r}−{l}\:\mathrm{cos}\:\varphi\right)−\:{l}\:\mathrm{sin}\:\varphi}{\:\sqrt{\mathrm{1}+\mathrm{4}{t}^{\mathrm{2}} }} \\ $$$${y}_{{A}} ={t}^{\mathrm{2}} −\frac{{r}−{l}\:\mathrm{cos}\:\varphi+\:\mathrm{2}{t}\:{l}\:\mathrm{sin}\:\varphi}{\:\sqrt{\mathrm{1}+\mathrm{4}{t}^{\mathrm{2}} }} \\ $$

Commented by mr W last updated on 10/Dec/20

Commented by mr W last updated on 10/Dec/20

Commented by mr W last updated on 10/Dec/20

Commented by ajfour last updated on 09/Dec/20

Perfect and Beautiful Sir!

$${Perfect}\:{and}\:{Beautiful}\:{Sir}! \\ $$

Commented by talminator2856791 last updated on 10/Dec/20

 what software have you used to develop this image

$$\:\mathrm{what}\:\mathrm{software}\:\mathrm{have}\:\mathrm{you}\:\mathrm{used}\:\mathrm{to}\:\mathrm{develop}\:\mathrm{this}\:\mathrm{image} \\ $$

Commented by mr W last updated on 10/Dec/20

the app is called Grapher.

$${the}\:{app}\:{is}\:{called}\:{Grapher}. \\ $$

Commented by mr W last updated on 10/Dec/20

Commented by mr W last updated on 10/Dec/20

Commented by mr W last updated on 11/Dec/20

Terms of Service

Privacy Policy

Contact: info@tinkutara.com