Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 125313 by john_santu last updated on 10/Dec/20

   β(x)=∫ (x^3 /( (√(1−x^2 )))) dx

β(x)=x31x2dx

Answered by john_santu last updated on 10/Dec/20

let (√(1−x^2  )) = w ⇒x^2  = 1−w^2    x dx = −w dw   β(x)= ∫ (((1−w^2 )(−w dw))/w)   = ∫ (w^2 −1) dw = (1/3)w^3 −w + c   = (1/3)w(w^2 −3) + c   = ((√(1−x^2 ))/3) (1−x^2 −3)+ c   = ((√(1−x^2 ))/3) (−2−x^2 ) + c

let1x2=wx2=1w2xdx=wdwβ(x)=(1w2)(wdw)w=(w21)dw=13w3w+c=13w(w23)+c=1x23(1x23)+c=1x23(2x2)+c

Answered by liberty last updated on 10/Dec/20

we substitute x^2  = r then x = r^(1/2)   β(x)= ∫ (x^3 /( (√(1−x^2 )))) dx = ∫ r^(3/2) (1−r)^(−(1/2)) ((1/2)r^(−(1/2)) ) dr  = (1/2)∫ r(1−r)^(−(1/2))  dr   let (1−r)^(1/2)  = h , r=1−h^2  ; dr = −2h dh  β(x) = (1/2)∫(1−h^2 )h^(−1) (−2h) dh   = (1/3)h^3 −h + c = (1/3)h(h^2 −3)+c  = ((√(1−r))/3) (−r−2) + c = ((√(1−x^2 ))/3)(−x^2 −2) + c

wesubstitutex2=rthenx=r12β(x)=x31x2dx=r32(1r)12(12r12)dr=12r(1r)12drlet(1r)12=h,r=1h2;dr=2hdhβ(x)=12(1h2)h1(2h)dh=13h3h+c=13h(h23)+c=1r3(r2)+c=1x23(x22)+c

Answered by Ñï= last updated on 10/Dec/20

Commented by Ñï= last updated on 10/Dec/20

x=itanθ

x=itanθ

Terms of Service

Privacy Policy

Contact: info@tinkutara.com