All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 12535 by tawa last updated on 24/Apr/17
Usethereductionformular.In=∫sinn(x)dx=−1nsinn−1(x)cos(x)+n−1nIn−2,toevaluateIn=∫sin6(x)dx
Answered by mrW1 last updated on 25/Apr/17
In=∫sinn(x)dx=−1nsinn−1(x)cos(x)+n−1nIn−2I6=∫sin6xdx=−16sin5xcosx+56∫sin4xdxI4=∫sin4xdx=−14sin3xcosx+34∫sin2xdxI2=∫sin2xdx=−12sinxcosx+12∫dx=12x−sin2x4I4=−14sin3xcosx+34(12x−sin2x4)=38x−316sin2x−14sin3cosxI6=−16sin5xcosx+56[38x−316sin2x−14sin3cosx]=516x−532sin2x−124sin3cosx−16sin5xcosx+C
Commented by tawa last updated on 25/Apr/17
wow,Godblessyousir.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com