Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 125359 by weltr last updated on 10/Dec/20

 { ((x + y = ((5π)/3))),((sin x = 2sin y)) :}

{x+y=5π3sinx=2siny

Answered by Ar Brandon last updated on 10/Dec/20

 { ((x+y=((5π)/3)),(...(i))),((sinx=2siny),(...(ii))) :}  From (i), x+y=((5π)/3) ⇒ y=((5π)/3)−x  substituting the above result in (ii) we have ;  sinx=2sin(((5π)/3)−x)=2sin(π+(((2π)/3)−x))=2sin(x−((2π)/3))             {sin(π+x)=−sinx=sin(−x)}           =2[sin(x)cos(((2π)/3))−cos(x)sin(((2π)/3))]           =2[−(1/2)sinx−((√3)/2)cosx]=−sinx−(√3)cosx  ⇒2sinx=−(√3)cosx ⇒ tanx=−((√3)/2)  x=tan^(−1) (−((√3)/2)) , y=((5π)/3)−tan^(−1) (−((√3)/2))

{x+y=5π3...(i)sinx=2siny...(ii)From(i),x+y=5π3y=5π3xsubstitutingtheaboveresultin(ii)wehave;sinx=2sin(5π3x)=2sin(π+(2π3x))=2sin(x2π3){sin(π+x)=sinx=sin(x)}=2[sin(x)cos(2π3)cos(x)sin(2π3)]=2[12sinx32cosx]=sinx3cosx2sinx=3cosxtanx=32x=tan1(32),y=5π3tan1(32)

Commented by MJS_new last updated on 10/Dec/20

good path but you embezzle at least (10^(1000) )!  solutions...  x=nπ−arctan ((√3)/2)  y=−nπ+((5π)/3)+arctan ((√3)/2)

goodpathbutyouembezzleatleast(101000)!solutions...x=nπarctan32y=nπ+5π3+arctan32

Commented by Ar Brandon last updated on 10/Dec/20

������

Commented by Ar Brandon last updated on 10/Dec/20

Thanks majesty ��

Commented by Ar Brandon last updated on 10/Dec/20

mjs, I meant ����

Commented by Ar Brandon last updated on 10/Dec/20

Extend my greetings to her majesty Sir �� Tell her I miss her so much����

Commented by Dwaipayan Shikari last updated on 10/Dec/20

you can't tell that you have told

Commented by Ar Brandon last updated on 10/Dec/20

tell, told, till����

Commented by Dwaipayan Shikari last updated on 10/Dec/20

�� ����

Commented by Ar Brandon last updated on 10/Dec/20

��I prefer this��

Commented by Ar Brandon last updated on 10/Dec/20

শুভ দিন��

Commented by Dwaipayan Shikari last updated on 10/Dec/20

হো

Answered by Dwaipayan Shikari last updated on 10/Dec/20

((sinx+siny)/(sinx−cosy))=3⇒((tan(((x+y)/2)))/(tan(((x−y)/2))))=3⇒tan(((x−y)/2))=−(1/(3(√3)))  x−y=2kπ−tan^(−1) (1/(3(√3)))  x=(k+(5/6))π−(1/2)tan^(−1) (1/(3(√3)))  , y=((5/6)−k)π+(1/2)tan^(−1) (1/(3(√3)))

sinx+sinysinxcosy=3tan(x+y2)tan(xy2)=3tan(xy2)=133xy=2kπtan1133x=(k+56)π12tan1133,y=(56k)π+12tan1133

Terms of Service

Privacy Policy

Contact: info@tinkutara.com