Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 125390 by mnjuly1970 last updated on 10/Dec/20

        nice  calculus...       evaluate ::::↷      Ω=∫_0 ^( ∞) (((√x) tan^(−1) (x))/(1+x^2 ))dx=???

nicecalculus...evaluate::::↷Ω=0xtan1(x)1+x2dx=???

Answered by mathmax by abdo last updated on 11/Dec/20

I =∫_0 ^∞  (((√x)arctan(x))/(1+x^2 ))dx  changement (√x)=t give x=t^2  ⇒  I=∫_0 ^∞   ((t arctan(t^2 ))/(1+t^4 ))(2t)dt =2 ∫_0 ^∞   (t^2 /(1+t^4 ))arctan(t^2 )dt  =∫_(−∞) ^(+∞)  ((t^2  arctan(t^2 ))/(t^4  +1))dt  its clear that I is convergent let  ϕ(z)=((z^2  arctan(z^2 ))/(z^4  +1))  we have ϕ(z)=((z^2 arctan(z^2 ))/((z^2 −i)(z^2  +i)))  =((z^2  arctan(z^2 ))/((z−e^((iπ)/4) )(z+e^((iπ)/4) )(z−e^(−((iπ)/4)) )(z+e^(−((iπ)/4)) )))  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{Res(ϕ,e^((iπ)/4) )+Res(ϕ,−e^(−((iπ)/4)) )}  Res(ϕ,e^((iπ)/4) ) =((iarctan(i))/(2e^((iπ)/4) (2i))) =(1/4)e^(−((iπ)/4))  arctan(i)  Res(ϕ,−e^(−((iπ)/4)) ) =((−iarctan(−i))/((−2i)(−2e^(−((iπ)/4)) ))) =(1/4)e^((iπ)/4)  arctan(i) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =((2iπ)/4) arctan(i){e^((iπ)/4)  +e^(−((iπ)/4)) }  =((iπ)/2)arctan(i)×2cos((π/4)) =iπarctan(i)×((√2)/2)  ⇒I=((iπ)/( (√2))) arctan(i)  rest to determine the value of arctan(i)...  be continued...

I=0xarctan(x)1+x2dxchangementx=tgivex=t2I=0tarctan(t2)1+t4(2t)dt=20t21+t4arctan(t2)dt=+t2arctan(t2)t4+1dtitsclearthatIisconvergentletφ(z)=z2arctan(z2)z4+1wehaveφ(z)=z2arctan(z2)(z2i)(z2+i)=z2arctan(z2)(zeiπ4)(z+eiπ4)(zeiπ4)(z+eiπ4)+φ(z)dz=2iπ{Res(φ,eiπ4)+Res(φ,eiπ4)}Res(φ,eiπ4)=iarctan(i)2eiπ4(2i)=14eiπ4arctan(i)Res(φ,eiπ4)=iarctan(i)(2i)(2eiπ4)=14eiπ4arctan(i)+φ(z)dz=2iπ4arctan(i){eiπ4+eiπ4}=iπ2arctan(i)×2cos(π4)=iπarctan(i)×22I=iπ2arctan(i)resttodeterminethevalueofarctan(i)...becontinued...

Answered by mnjuly1970 last updated on 11/Dec/20

Terms of Service

Privacy Policy

Contact: info@tinkutara.com