All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 125390 by mnjuly1970 last updated on 10/Dec/20
nicecalculus...evaluate::::↷Ω=∫0∞xtan−1(x)1+x2dx=???
Answered by mathmax by abdo last updated on 11/Dec/20
I=∫0∞xarctan(x)1+x2dxchangementx=tgivex=t2⇒I=∫0∞tarctan(t2)1+t4(2t)dt=2∫0∞t21+t4arctan(t2)dt=∫−∞+∞t2arctan(t2)t4+1dtitsclearthatIisconvergentletφ(z)=z2arctan(z2)z4+1wehaveφ(z)=z2arctan(z2)(z2−i)(z2+i)=z2arctan(z2)(z−eiπ4)(z+eiπ4)(z−e−iπ4)(z+e−iπ4)∫−∞+∞φ(z)dz=2iπ{Res(φ,eiπ4)+Res(φ,−e−iπ4)}Res(φ,eiπ4)=iarctan(i)2eiπ4(2i)=14e−iπ4arctan(i)Res(φ,−e−iπ4)=−iarctan(−i)(−2i)(−2e−iπ4)=14eiπ4arctan(i)⇒∫−∞+∞φ(z)dz=2iπ4arctan(i){eiπ4+e−iπ4}=iπ2arctan(i)×2cos(π4)=iπarctan(i)×22⇒I=iπ2arctan(i)resttodeterminethevalueofarctan(i)...becontinued...
Answered by mnjuly1970 last updated on 11/Dec/20
Terms of Service
Privacy Policy
Contact: info@tinkutara.com