Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 125491 by ajfour last updated on 11/Dec/20

Commented by ajfour last updated on 11/Dec/20

If outermost triangle is equilateral  and radius of circle is unity, find  maximum brown shaded area.

$${If}\:{outermost}\:{triangle}\:{is}\:{equilateral} \\ $$$${and}\:{radius}\:{of}\:{circle}\:{is}\:{unity},\:{find} \\ $$$${maximum}\:{brown}\:{shaded}\:{area}. \\ $$

Answered by mr W last updated on 11/Dec/20

Commented by mr W last updated on 11/Dec/20

BC=2 cos θ  AB=(√7)  tan β=((2 sin^2  θ )/( (√3)+2 sin θ cos θ))  DE=(√3) tan β=((2(√3) sin^2  θ )/( (√3)+2 sin θ cos θ))  BD=2−((2(√3) sin^2  θ )/( (√3)+2 sin θ cos θ))  A=Δ_(BCD) =(1/2)×2 cos θ×(2−((2(√3) sin^2  θ )/( (√3)+2 sin θ cos θ))) sin θ  ⇒A=sin 2θ (1−(((√3) sin^2  θ )/( (√3)+sin 2θ)))    A_(max) =0.7393 at θ=35.2354°

$${BC}=\mathrm{2}\:\mathrm{cos}\:\theta \\ $$$${AB}=\sqrt{\mathrm{7}} \\ $$$$\mathrm{tan}\:\beta=\frac{\mathrm{2}\:\mathrm{sin}^{\mathrm{2}} \:\theta\:}{\:\sqrt{\mathrm{3}}+\mathrm{2}\:\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta} \\ $$$${DE}=\sqrt{\mathrm{3}}\:\mathrm{tan}\:\beta=\frac{\mathrm{2}\sqrt{\mathrm{3}}\:\mathrm{sin}^{\mathrm{2}} \:\theta\:}{\:\sqrt{\mathrm{3}}+\mathrm{2}\:\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta} \\ $$$${BD}=\mathrm{2}−\frac{\mathrm{2}\sqrt{\mathrm{3}}\:\mathrm{sin}^{\mathrm{2}} \:\theta\:}{\:\sqrt{\mathrm{3}}+\mathrm{2}\:\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta} \\ $$$${A}=\Delta_{{BCD}} =\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{2}\:\mathrm{cos}\:\theta×\left(\mathrm{2}−\frac{\mathrm{2}\sqrt{\mathrm{3}}\:\mathrm{sin}^{\mathrm{2}} \:\theta\:}{\:\sqrt{\mathrm{3}}+\mathrm{2}\:\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta}\right)\:\mathrm{sin}\:\theta \\ $$$$\Rightarrow{A}=\mathrm{sin}\:\mathrm{2}\theta\:\left(\mathrm{1}−\frac{\sqrt{\mathrm{3}}\:\mathrm{sin}^{\mathrm{2}} \:\theta\:}{\:\sqrt{\mathrm{3}}+\mathrm{sin}\:\mathrm{2}\theta}\right) \\ $$$$ \\ $$$${A}_{{max}} =\mathrm{0}.\mathrm{7393}\:{at}\:\theta=\mathrm{35}.\mathrm{2354}° \\ $$

Commented by ajfour last updated on 11/Dec/20

Commented by mr W last updated on 11/Dec/20

Commented by ajfour last updated on 11/Dec/20

tan α=((√3)/2)  Let bottommost point of circle F.  ∠ADF=φ    ,  center of circle O.  let  OD=y  ((sin 2θ)/(CD))=((sin φ)/1)=((sin (φ+2θ))/y)  ⇒  y=cos 2θ+((sin 2θ)/(tan φ))  tan φ=((√3)/(1−OD))=((√3)/(1−y))  ⇒  y=cos 2θ+(((1−y)sin 2θ)/( (√3)))  ⇒  y=(((√3)cos 2θ+sin 2θ)/( (√3)+sin 2θ))  Area  s=2△=(1+y)sin 2θ     s=(1+y)sin 2θ        =(1+(((√3)cos 2θ+sin 2θ)/( (√3)+sin 2θ)))sin 2θ      let  tan θ=m    s=sin 2θ(2−((2(√3)sin^2 θ)/( (√3)+2sin θcos θ)))      =((4m)/((1+m^2 )))[1−(((√3)m^2 )/( (√3)(1+m^2 )+2m))]   ⇒ △_(max) =(s_(max) /2)≈ 0.7393     θ≈ tan^(−1) (0.7063)≈35.234°

$$\mathrm{tan}\:\alpha=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$${Let}\:{bottommost}\:{point}\:{of}\:{circle}\:{F}. \\ $$$$\angle{ADF}=\phi\:\:\:\:,\:\:{center}\:{of}\:{circle}\:{O}. \\ $$$${let}\:\:{OD}={y} \\ $$$$\frac{\mathrm{sin}\:\mathrm{2}\theta}{{CD}}=\frac{\mathrm{sin}\:\phi}{\mathrm{1}}=\frac{\mathrm{sin}\:\left(\phi+\mathrm{2}\theta\right)}{{y}} \\ $$$$\Rightarrow\:\:{y}=\mathrm{cos}\:\mathrm{2}\theta+\frac{\mathrm{sin}\:\mathrm{2}\theta}{\mathrm{tan}\:\phi} \\ $$$$\mathrm{tan}\:\phi=\frac{\sqrt{\mathrm{3}}}{\mathrm{1}−{OD}}=\frac{\sqrt{\mathrm{3}}}{\mathrm{1}−{y}} \\ $$$$\Rightarrow\:\:{y}=\mathrm{cos}\:\mathrm{2}\theta+\frac{\left(\mathrm{1}−{y}\right)\mathrm{sin}\:\mathrm{2}\theta}{\:\sqrt{\mathrm{3}}} \\ $$$$\Rightarrow\:\:{y}=\frac{\sqrt{\mathrm{3}}\mathrm{cos}\:\mathrm{2}\theta+\mathrm{sin}\:\mathrm{2}\theta}{\:\sqrt{\mathrm{3}}+\mathrm{sin}\:\mathrm{2}\theta} \\ $$$${Area}\:\:{s}=\mathrm{2}\bigtriangleup=\left(\mathrm{1}+{y}\right)\mathrm{sin}\:\mathrm{2}\theta \\ $$$$\:\:\:{s}=\left(\mathrm{1}+{y}\right)\mathrm{sin}\:\mathrm{2}\theta \\ $$$$\:\:\:\:\:\:=\left(\mathrm{1}+\frac{\sqrt{\mathrm{3}}\mathrm{cos}\:\mathrm{2}\theta+\mathrm{sin}\:\mathrm{2}\theta}{\:\sqrt{\mathrm{3}}+\mathrm{sin}\:\mathrm{2}\theta}\right)\mathrm{sin}\:\mathrm{2}\theta \\ $$$$\:\:\:\:{let}\:\:\mathrm{tan}\:\theta={m} \\ $$$$\:\:{s}=\mathrm{sin}\:\mathrm{2}\theta\left(\mathrm{2}−\frac{\mathrm{2}\sqrt{\mathrm{3}}\mathrm{sin}\:^{\mathrm{2}} \theta}{\:\sqrt{\mathrm{3}}+\mathrm{2sin}\:\theta\mathrm{cos}\:\theta}\right) \\ $$$$\:\:\:\:=\frac{\mathrm{4}{m}}{\left(\mathrm{1}+{m}^{\mathrm{2}} \right)}\left[\mathrm{1}−\frac{\sqrt{\mathrm{3}}{m}^{\mathrm{2}} }{\:\sqrt{\mathrm{3}}\left(\mathrm{1}+{m}^{\mathrm{2}} \right)+\mathrm{2}{m}}\right] \\ $$$$\:\Rightarrow\:\bigtriangleup_{{max}} =\frac{{s}_{{max}} }{\mathrm{2}}\approx\:\mathrm{0}.\mathrm{7393} \\ $$$$\:\:\:\theta\approx\:\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{0}.\mathrm{7063}\right)\approx\mathrm{35}.\mathrm{234}° \\ $$

Commented by ajfour last updated on 11/Dec/20

s=f(m)

$${s}={f}\left({m}\right) \\ $$

Commented by ajfour last updated on 11/Dec/20

Excellent, Sir, Thanks a lot!

$${Excellent},\:{Sir},\:{Thanks}\:{a}\:{lot}! \\ $$

Commented by mr W last updated on 12/Dec/20

  s=sin 2θ(2−((2(√3)sin^2 θ)/( (√3)+2sin θcos θ)))  ⇒ s=2 sin 2θ(1−(((√3)sin^2 θ)/( (√3)+sin 2θ)))  we got the same equation in terms  of θ.

$$\:\:{s}=\mathrm{sin}\:\mathrm{2}\theta\left(\mathrm{2}−\frac{\mathrm{2}\sqrt{\mathrm{3}}\mathrm{sin}\:^{\mathrm{2}} \theta}{\:\sqrt{\mathrm{3}}+\mathrm{2sin}\:\theta\mathrm{cos}\:\theta}\right) \\ $$$$\Rightarrow\:{s}=\mathrm{2}\:\mathrm{sin}\:\mathrm{2}\theta\left(\mathrm{1}−\frac{\sqrt{\mathrm{3}}\mathrm{sin}\:^{\mathrm{2}} \theta}{\:\sqrt{\mathrm{3}}+\mathrm{sin}\:\mathrm{2}\theta}\right) \\ $$$${we}\:{got}\:{the}\:{same}\:{equation}\:{in}\:{terms} \\ $$$${of}\:\theta. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com