Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 125505 by mathmax by abdo last updated on 11/Dec/20

let C={z/∣z∣=1} calculste ∫_C tanz dz

letC={z/z∣=1}calculsteCtanzdz

Answered by mathmax by abdo last updated on 11/Dec/20

∫_C tanz dx =∫_C ((sinz)/(cosz))dz =_(e^(iz)  =w)    ∫_(∣w∣=1)     (((w−w^(−1) )/(2i))/((w+w^(−1) )/2))(dw/(iw))  =(1/i)∫_(∣w∣=1)     ((w−w^(−1) )/(iw(w+w^(−1) )))dw=−∫_(∣w∣=1)    ((w−w^(−1) )/(w^2  +1))dw  =−∫_(∣w∣=1)    ((w^2 −1)/(w(w^2  +1)))dw  let ϕ(w)=((w^2 −1)/(w(w^2  +1))) the poles of w  are 0=i and −i ⇒∫_(∣w∣=1)   ϕ(w)dw=2iπ{Res(ϕ,o)+Res(ϕ,i)+Res(ϕ,−i)}  Res(ϕ,o)=−1  and Res(ϕ,i)=((−2)/(i(2i)))=1  Res(ϕ,−i) =((−2)/(−i(−2i)))=((−2)/(−2))=1 ⇒  ∫_C tanz dz =−2iπ{−1+1+1} =−2iπ

Ctanzdx=Csinzcoszdz=eiz=ww∣=1ww12iw+w12dwiw=1iw∣=1ww1iw(w+w1)dw=w∣=1ww1w2+1dw=w∣=1w21w(w2+1)dwletφ(w)=w21w(w2+1)thepolesofware0=iandiw∣=1φ(w)dw=2iπ{Res(φ,o)+Res(φ,i)+Res(φ,i)}Res(φ,o)=1andRes(φ,i)=2i(2i)=1Res(φ,i)=2i(2i)=22=1Ctanzdz=2iπ{1+1+1}=2iπ

Terms of Service

Privacy Policy

Contact: info@tinkutara.com