All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 125506 by mathmax by abdo last updated on 11/Dec/20
letC={z/∣z∣=2}find∫Cz2sinzcosz(z2+1)2dz
Commented by ZiYangLee last updated on 11/Dec/20
First,weletthecomplexfunctionf(z)=z2sin(z)cos(z)(1+z2)2Notedthatf(z)hastwosecondpolarpolesinsidethecircle∣z∣=2,ByResidueTheorom,wehave∮∣z∣=2z2sin(z)cos(z)(1+z2)2=2πi{Resz=if(z)+Resz=−if(z)}=2πi{limz→i[(z−i)2f(z)]+limz→iddz[(z+i)2f(z)]}=2πi(3e4+116e2+3e4+116e2)=3e4+14πi
Answered by mathmax by abdo last updated on 11/Dec/20
letφ(z)=z2sinzcosz(z2+1)2⇒φ(z)=12z2sin(2z)(z−i)2(z+i)2residustheoremgive∫Cφ(z)dz=2iπ{Res(φ,i)+Res(φ,−i)}(isnd−iaredoublepoles)⇒Res(φ,i)=limz→i1(2−1)!{(z−i)2φ(z)}(1)=limz→i{z2sin(2z)2(z+i)2}(1)=12limz→i(2zsin(2z)+2z2cos(2z))(z+i)2−2(z+i)z2sin(2z)(z+i)4=limz→i(zsin(2z)+z2cos(2z))(z+i)−z2sin2z)(z+i)3=(2i)(isin(2i)−cos(2i))+sin(2i)(2i)3=−2sin(2i)−2icos(2i)+sin(2i)−8i=sin(2i)+2icos(2i)8iRes(φ,−i)=limz→−i1(2−1)!{(z+i)2φ(z)}(1)=12limz→−i{z2sin(2z)(z−i)2}(1)=12limz→−i(2zsin(2z)+2z2cos(2z))(z−i)2−2(z−i)z2sin(2z)(z−i)4=limz→−i(zsin(2z)+z2cos(2z))(z−i)−z2sin(2z)(z−i)3=(−2i)(isin(2i)−cos(2i))−sin(2i)(−2i)3=(−2i)(isin(2i)−cos(2i))−sin(2i)8i=2sin(2i)+2icos(2i)−sin(2i)8i=sin(2i)+2icos(2i)8i⇒∫Cφ(z)dz=2iπ{sin(2i)+2icos(2i)+sin(2i)+2icos(2i)8i}=π4(2sin(2i)+4icos(2i))=π2sin(2i)+iπcos(2i)sinz=eiz−e−iz2i⇒sin(2i)=ei(2i)−e−i(2i)2i=e−2−e22i=ish(2)cosz=eiz+e−iz2⇒cos(2i)=e−2+e22=ch(2)⇒⇒∫Cφ(z)dz=iπ2sh(2)+iπch(2)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com