Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 125506 by mathmax by abdo last updated on 11/Dec/20

let C={z/∣z∣=2} find ∫_C  ((z^2 sinz cosz)/((z^2 +1)^2 ))dz

letC={z/z∣=2}findCz2sinzcosz(z2+1)2dz

Commented by ZiYangLee last updated on 11/Dec/20

First, we let the complex function  f(z)=((z^2 sin(z)cos(z))/((1+z^2 )^2 ))  Noted that f(z) has two second polar  poles inside the circle ∣z∣=2,   By Residue Theorom, we have    ∮_(∣z∣=2) ((z^2 sin(z)cos(z))/((1+z^2 )^2 ))  =2πi{Re_(z=i) sf(z)+Re_(z=−i) s f(z)}  =2πi{lim_(z→i) [(z−i)^2 f(z)]+lim_(z→i) (d/dz)[(z+i)^2 f(z)]}  =2πi(((3e^4 +1)/(16e^2 ))+((3e^4 +1)/(16e^2 )))  =((3e^4 +1)/4)πi

First,weletthecomplexfunctionf(z)=z2sin(z)cos(z)(1+z2)2Notedthatf(z)hastwosecondpolarpolesinsidethecirclez∣=2,ByResidueTheorom,wehavez∣=2z2sin(z)cos(z)(1+z2)2=2πi{Resz=if(z)+Resz=if(z)}=2πi{limzi[(zi)2f(z)]+limziddz[(z+i)2f(z)]}=2πi(3e4+116e2+3e4+116e2)=3e4+14πi

Answered by mathmax by abdo last updated on 11/Dec/20

let ϕ(z)=((z^2 sinz cosz)/((z^2 +1)^2 )) ⇒ϕ(z)=(1/2)((z^2 sin(2z))/((z−i)^2 (z+i)^2 ))  residus theorem give ∫_C ϕ(z)dz=2iπ{Res(ϕ,i)+Res(ϕ,−i)}  (i snd −i are double poles) ⇒  Res(ϕ,i)=lim_(z→i) (1/((2−1)!)){(z−i)^2 ϕ(z)}^((1))   =lim_(z→i)    {((z^2 sin(2z))/(2(z+i)^2 ))}^((1))  =(1/2)lim_(z→i)   (((2zsin(2z)+2z^2 cos(2z))(z+i)^2 −2(z+i)z^2 sin(2z))/((z+i)^4 ))  =lim_(z→i)     (((zsin(2z)+z^2 cos(2z))(z+i)−z^2 sin2z))/((z+i)^3 ))  =(((2i)(isin(2i)−cos(2i))+sin(2i))/((2i)^3 )) =((−2sin(2i)−2icos(2i)+sin(2i))/(−8i))  =((sin(2i)+2icos(2i))/(8i))  Res(ϕ,−i)=lim_(z→−i)   (1/((2−1)!)){(z+i)^2 ϕ(z)}^((1))   =(1/2)lim_(z→−i)    { ((z^2 sin(2z))/((z−i)^2 ))}^((1))   =(1/2)lim_(z→−i)    (((2zsin(2z)+2z^2 cos(2z))(z−i)^2 −2(z−i)z^2 sin(2z))/((z−i)^4 ))  =lim_(z→−i)      (((zsin(2z)+z^2 cos(2z))(z−i)−z^2 sin(2z))/((z−i)^3 ))  =(((−2i)(isin(2i)−cos(2i))−sin(2i))/((−2i)^3 ))  =(((−2i)(isin(2i)−cos(2i))−sin(2i))/(8i))=((2sin(2i)+2icos(2i)−sin(2i))/(8i))  =((sin(2i)+2icos(2i))/(8i)) ⇒  ∫_C ϕ(z)dz =2iπ{((sin(2i)+2icos(2i)+sin(2i)+2icos(2i))/(8i))}  =(π/4)(2sin(2i)+4icos(2i)) =(π/2)sin(2i)+iπ cos(2i)  sinz =((e^(iz) −e^(−iz) )/(2i)) ⇒sin(2i)=((e^(i(2i)) −e^(−i(2i)) )/(2i))=((e^(−2) −e^2 )/(2i))  =ish(2)  cosz =((e^(iz) +e^(−iz) )/2)⇒cos(2i)=((e^(−2) +e^2 )/2)=ch(2) ⇒  ⇒∫_C ϕ(z)dz =((iπ)/2)sh(2)+iπch(2)

letφ(z)=z2sinzcosz(z2+1)2φ(z)=12z2sin(2z)(zi)2(z+i)2residustheoremgiveCφ(z)dz=2iπ{Res(φ,i)+Res(φ,i)}(isndiaredoublepoles)Res(φ,i)=limzi1(21)!{(zi)2φ(z)}(1)=limzi{z2sin(2z)2(z+i)2}(1)=12limzi(2zsin(2z)+2z2cos(2z))(z+i)22(z+i)z2sin(2z)(z+i)4=limzi(zsin(2z)+z2cos(2z))(z+i)z2sin2z)(z+i)3=(2i)(isin(2i)cos(2i))+sin(2i)(2i)3=2sin(2i)2icos(2i)+sin(2i)8i=sin(2i)+2icos(2i)8iRes(φ,i)=limzi1(21)!{(z+i)2φ(z)}(1)=12limzi{z2sin(2z)(zi)2}(1)=12limzi(2zsin(2z)+2z2cos(2z))(zi)22(zi)z2sin(2z)(zi)4=limzi(zsin(2z)+z2cos(2z))(zi)z2sin(2z)(zi)3=(2i)(isin(2i)cos(2i))sin(2i)(2i)3=(2i)(isin(2i)cos(2i))sin(2i)8i=2sin(2i)+2icos(2i)sin(2i)8i=sin(2i)+2icos(2i)8iCφ(z)dz=2iπ{sin(2i)+2icos(2i)+sin(2i)+2icos(2i)8i}=π4(2sin(2i)+4icos(2i))=π2sin(2i)+iπcos(2i)sinz=eizeiz2isin(2i)=ei(2i)ei(2i)2i=e2e22i=ish(2)cosz=eiz+eiz2cos(2i)=e2+e22=ch(2)Cφ(z)dz=iπ2sh(2)+iπch(2)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com