Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 12551 by @ANTARES_VY last updated on 25/Apr/17

This  y=((2cos^2 x+sin2x)/(2sin^2 x))  find  the  smallest  value  of  the  function.

Thisy=2cos2x+sin2x2sin2xfindthesmallestvalueofthefunction.

Answered by mrW1 last updated on 25/Apr/17

y=((2cos^2 x+sin2x)/(2sin^2 x))   =((2cos^2 x+2sinxcos x)/(2sin^2 x))   =((cos^2 x+sinxcos x)/(sin^2 x))   =cot^2  x+cot x  =cot^2  x+2×(1/2)cot x+((1/2))^2 −(1/4)  =(cot x+(1/2))^2 −(1/4)≥−(1/4)  ⇒smalles value of function=−(1/4)    minimum when cot x+(1/2)=0  or tan x=−2  or x=nπ−tan^(−1) (2)

y=2cos2x+sin2x2sin2x=2cos2x+2sinxcosx2sin2x=cos2x+sinxcosxsin2x=cot2x+cotx=cot2x+2×12cotx+(12)214=(cotx+12)21414smallesvalueoffunction=14minimumwhencotx+12=0ortanx=2orx=nπtan1(2)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com