Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 125572 by ajfour last updated on 12/Dec/20

Commented by ajfour last updated on 12/Dec/20

If equilateral triangle ABC has  side length s=3 units, find x_A .  Parabola eq. is  y=x^2 .

$${If}\:{equilateral}\:{triangle}\:{ABC}\:{has} \\ $$$${side}\:{length}\:{s}=\mathrm{3}\:{units},\:{find}\:{x}_{{A}} . \\ $$$${Parabola}\:{eq}.\:{is}\:\:{y}={x}^{\mathrm{2}} . \\ $$

Commented by mr W last updated on 12/Dec/20

nice question again!  i can not find an exact solution.

$${nice}\:{question}\:{again}! \\ $$$${i}\:{can}\:{not}\:{find}\:{an}\:{exact}\:{solution}. \\ $$

Answered by mr W last updated on 12/Dec/20

A(a,0) with a≥0  D(h,k) with D=midpoint BC  k^2 +(h−a)^2 =((3s^2 )/4)   ...(i)  eqn. of BC:  y=k−((h−a)/k)(x−h)=((a−h)/k)x+k−((h(a−h))/k)  intersection  x^2 =((a−h)/k)x+k−((h(a−h))/k)  x^2 −((a−h)/k)x−k+((h(a−h))/k)=0  x_1 +x_2 =((a−h)/k)=2h   ...(ii)  x_1 x_2 =−k+((h(a−h))/k)  (y_2 −y_1 )^2 +(x_2 −x_1 )^2 =s^2   (x_2 ^2 −x_1 ^2 )^2 +(x_2 −x_1 )^2 =s^2   [(x_2 +x_1 )^2 +1][(x_2 +x_1 )^2 −4x_1 x_2 ]=s^2   4(4h^2 +1)(h^2 +k−((h(a−h))/k))=s^2    ...(iii)  from (ii):  k=((a−h)/(2h))   ...(I)  put (I) into (i):  (((a−h)^2 )/(4h^2 ))+(a−h)^2 =((3s^2 )/4)  (1+4h^2 )(a−h)^2 =3s^2 h^2   ⇒a=h(1+s(√(3/(1+4h^2 ))))   ...(II)  put  into (iii):  ⇒2(1+4h^2 )(s(√(3/(1+4h^2 )))−2h^2 )=s^2    ...(III)    for a given s (≤4.73565) we get h from  (III) and then a from (II).

$${A}\left({a},\mathrm{0}\right)\:{with}\:{a}\geqslant\mathrm{0} \\ $$$${D}\left({h},{k}\right)\:{with}\:{D}={midpoint}\:{BC} \\ $$$${k}^{\mathrm{2}} +\left({h}−{a}\right)^{\mathrm{2}} =\frac{\mathrm{3}{s}^{\mathrm{2}} }{\mathrm{4}}\:\:\:...\left({i}\right) \\ $$$${eqn}.\:{of}\:{BC}: \\ $$$${y}={k}−\frac{{h}−{a}}{{k}}\left({x}−{h}\right)=\frac{{a}−{h}}{{k}}{x}+{k}−\frac{{h}\left({a}−{h}\right)}{{k}} \\ $$$${intersection} \\ $$$${x}^{\mathrm{2}} =\frac{{a}−{h}}{{k}}{x}+{k}−\frac{{h}\left({a}−{h}\right)}{{k}} \\ $$$${x}^{\mathrm{2}} −\frac{{a}−{h}}{{k}}{x}−{k}+\frac{{h}\left({a}−{h}\right)}{{k}}=\mathrm{0} \\ $$$${x}_{\mathrm{1}} +{x}_{\mathrm{2}} =\frac{{a}−{h}}{{k}}=\mathrm{2}{h}\:\:\:...\left({ii}\right) \\ $$$${x}_{\mathrm{1}} {x}_{\mathrm{2}} =−{k}+\frac{{h}\left({a}−{h}\right)}{{k}} \\ $$$$\left({y}_{\mathrm{2}} −{y}_{\mathrm{1}} \right)^{\mathrm{2}} +\left({x}_{\mathrm{2}} −{x}_{\mathrm{1}} \right)^{\mathrm{2}} ={s}^{\mathrm{2}} \\ $$$$\left({x}_{\mathrm{2}} ^{\mathrm{2}} −{x}_{\mathrm{1}} ^{\mathrm{2}} \right)^{\mathrm{2}} +\left({x}_{\mathrm{2}} −{x}_{\mathrm{1}} \right)^{\mathrm{2}} ={s}^{\mathrm{2}} \\ $$$$\left[\left({x}_{\mathrm{2}} +{x}_{\mathrm{1}} \right)^{\mathrm{2}} +\mathrm{1}\right]\left[\left({x}_{\mathrm{2}} +{x}_{\mathrm{1}} \right)^{\mathrm{2}} −\mathrm{4}{x}_{\mathrm{1}} {x}_{\mathrm{2}} \right]={s}^{\mathrm{2}} \\ $$$$\mathrm{4}\left(\mathrm{4}{h}^{\mathrm{2}} +\mathrm{1}\right)\left({h}^{\mathrm{2}} +{k}−\frac{{h}\left({a}−{h}\right)}{{k}}\right)={s}^{\mathrm{2}} \:\:\:...\left({iii}\right) \\ $$$${from}\:\left({ii}\right): \\ $$$${k}=\frac{{a}−{h}}{\mathrm{2}{h}}\:\:\:...\left({I}\right) \\ $$$${put}\:\left({I}\right)\:{into}\:\left({i}\right): \\ $$$$\frac{\left({a}−{h}\right)^{\mathrm{2}} }{\mathrm{4}{h}^{\mathrm{2}} }+\left({a}−{h}\right)^{\mathrm{2}} =\frac{\mathrm{3}{s}^{\mathrm{2}} }{\mathrm{4}} \\ $$$$\left(\mathrm{1}+\mathrm{4}{h}^{\mathrm{2}} \right)\left({a}−{h}\right)^{\mathrm{2}} =\mathrm{3}{s}^{\mathrm{2}} {h}^{\mathrm{2}} \\ $$$$\Rightarrow{a}={h}\left(\mathrm{1}+{s}\sqrt{\frac{\mathrm{3}}{\mathrm{1}+\mathrm{4}{h}^{\mathrm{2}} }}\right)\:\:\:...\left({II}\right) \\ $$$${put}\:\:{into}\:\left({iii}\right): \\ $$$$\Rightarrow\mathrm{2}\left(\mathrm{1}+\mathrm{4}{h}^{\mathrm{2}} \right)\left({s}\sqrt{\frac{\mathrm{3}}{\mathrm{1}+\mathrm{4}{h}^{\mathrm{2}} }}−\mathrm{2}{h}^{\mathrm{2}} \right)={s}^{\mathrm{2}} \:\:\:...\left({III}\right) \\ $$$$ \\ $$$${for}\:{a}\:{given}\:{s}\:\left(\leqslant\mathrm{4}.\mathrm{73565}\right)\:{we}\:{get}\:{h}\:{from} \\ $$$$\left({III}\right)\:{and}\:{then}\:{a}\:{from}\:\left({II}\right). \\ $$

Commented by mr W last updated on 12/Dec/20

we see for 0<s<3.4641 there is one  possible triangle.   for 3.4641≤s≤4.73565 there are two  possible triangles.    example: s=4

$${we}\:{see}\:{for}\:\mathrm{0}<{s}<\mathrm{3}.\mathrm{4641}\:{there}\:{is}\:{one} \\ $$$${possible}\:{triangle}.\: \\ $$$${for}\:\mathrm{3}.\mathrm{4641}\leqslant{s}\leqslant\mathrm{4}.\mathrm{73565}\:{there}\:{are}\:{two} \\ $$$${possible}\:{triangles}. \\ $$$$ \\ $$$${example}:\:{s}=\mathrm{4} \\ $$

Commented by mr W last updated on 12/Dec/20

Commented by mr W last updated on 12/Dec/20

Commented by mr W last updated on 12/Dec/20

Commented by mr W last updated on 12/Dec/20

Commented by mr W last updated on 12/Dec/20

Answered by ajfour last updated on 12/Dec/20

let eq. of BC be  y=2mx+c  tan θ=2m  Intersection with parabola  x^2 −2mx−c=0  x=m±(√(m^2 +c))  midpoint D(m, 2m^2 +c)  (x_2 −x_1 )(√(1+4m^2 ))=s   ⇒  4(m^2 +c)(1+4m^2 )=s^2     ...(i)  ((s(√3))/2)((1/( (√(1+4m^2 )))))=2m^2 +c  ((s(√3))/(2(√(1+4m^2 ))))=m^2 +(s^2 /(4(1+4m^2 )))   ...(ii)  x_A =a=m+((s(√3))/2)(((2m)/( (√(1+4m^2 )))))   ...(iii)  let  1+4m^2 =t^2   now  from (ii)  2(√3)st=(t^2 −1)t^2 +s^2   ⇒   t^4 −t^2 −2(√3)st+s^2 =0     (s−(√3)t)^2 =4t^2 −t^4     s=(√3)t±(√(3t^2 +t^2 −t^4 ))    s=t((√3)+(√(4−t^2 )))    s_(max) ≈ 4.7356  Discriminant  D=12t^2 −4(t^4 −t^2 ) ≥0  ⇒  t^4 ≤4t^2   ⇒  t^2 =1+4m^2  ≤ 4  ⇒  tan θ=2m ≤ (√3)

$${let}\:{eq}.\:{of}\:{BC}\:{be} \\ $$$${y}=\mathrm{2}{mx}+{c} \\ $$$$\mathrm{tan}\:\theta=\mathrm{2}{m} \\ $$$${Intersection}\:{with}\:{parabola} \\ $$$${x}^{\mathrm{2}} −\mathrm{2}{mx}−{c}=\mathrm{0} \\ $$$${x}={m}\pm\sqrt{{m}^{\mathrm{2}} +{c}} \\ $$$${midpoint}\:{D}\left({m},\:\mathrm{2}{m}^{\mathrm{2}} +{c}\right) \\ $$$$\left({x}_{\mathrm{2}} −{x}_{\mathrm{1}} \right)\sqrt{\mathrm{1}+\mathrm{4}{m}^{\mathrm{2}} }={s}\:\:\:\Rightarrow \\ $$$$\mathrm{4}\left({m}^{\mathrm{2}} +{c}\right)\left(\mathrm{1}+\mathrm{4}{m}^{\mathrm{2}} \right)={s}^{\mathrm{2}} \:\:\:\:...\left({i}\right) \\ $$$$\frac{{s}\sqrt{\mathrm{3}}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\mathrm{4}{m}^{\mathrm{2}} }}\right)=\mathrm{2}{m}^{\mathrm{2}} +{c} \\ $$$$\frac{{s}\sqrt{\mathrm{3}}}{\mathrm{2}\sqrt{\mathrm{1}+\mathrm{4}{m}^{\mathrm{2}} }}={m}^{\mathrm{2}} +\frac{{s}^{\mathrm{2}} }{\mathrm{4}\left(\mathrm{1}+\mathrm{4}{m}^{\mathrm{2}} \right)}\:\:\:...\left({ii}\right) \\ $$$${x}_{{A}} ={a}={m}+\frac{{s}\sqrt{\mathrm{3}}}{\mathrm{2}}\left(\frac{\mathrm{2}{m}}{\:\sqrt{\mathrm{1}+\mathrm{4}{m}^{\mathrm{2}} }}\right)\:\:\:...\left({iii}\right) \\ $$$${let}\:\:\mathrm{1}+\mathrm{4}{m}^{\mathrm{2}} ={t}^{\mathrm{2}} \\ $$$${now}\:\:{from}\:\left({ii}\right) \\ $$$$\mathrm{2}\sqrt{\mathrm{3}}{st}=\left({t}^{\mathrm{2}} −\mathrm{1}\right){t}^{\mathrm{2}} +{s}^{\mathrm{2}} \\ $$$$\Rightarrow\:\:\:{t}^{\mathrm{4}} −{t}^{\mathrm{2}} −\mathrm{2}\sqrt{\mathrm{3}}{st}+{s}^{\mathrm{2}} =\mathrm{0} \\ $$$$\:\:\:\left({s}−\sqrt{\mathrm{3}}{t}\right)^{\mathrm{2}} =\mathrm{4}{t}^{\mathrm{2}} −{t}^{\mathrm{4}} \\ $$$$\:\:{s}=\sqrt{\mathrm{3}}{t}\pm\sqrt{\mathrm{3}{t}^{\mathrm{2}} +{t}^{\mathrm{2}} −{t}^{\mathrm{4}} } \\ $$$$\:\:{s}={t}\left(\sqrt{\mathrm{3}}+\sqrt{\mathrm{4}−{t}^{\mathrm{2}} }\right) \\ $$$$\:\:{s}_{{max}} \approx\:\mathrm{4}.\mathrm{7356} \\ $$$${Discriminant} \\ $$$${D}=\mathrm{12}{t}^{\mathrm{2}} −\mathrm{4}\left({t}^{\mathrm{4}} −{t}^{\mathrm{2}} \right)\:\geqslant\mathrm{0} \\ $$$$\Rightarrow\:\:{t}^{\mathrm{4}} \leqslant\mathrm{4}{t}^{\mathrm{2}} \\ $$$$\Rightarrow\:\:{t}^{\mathrm{2}} =\mathrm{1}+\mathrm{4}{m}^{\mathrm{2}} \:\leqslant\:\mathrm{4} \\ $$$$\Rightarrow\:\:\mathrm{tan}\:\theta=\mathrm{2}{m}\:\leqslant\:\sqrt{\mathrm{3}} \\ $$

Commented by ajfour last updated on 12/Dec/20

Sir, please help checking my  solution, our answers for s_(max)   differ.  Your solution even seems errorless  to me.

$${Sir},\:{please}\:{help}\:{checking}\:{my} \\ $$$${solution},\:{our}\:{answers}\:{for}\:{s}_{{max}} \\ $$$${differ}. \\ $$$${Your}\:{solution}\:{even}\:{seems}\:{errorless} \\ $$$${to}\:{me}. \\ $$

Commented by ajfour last updated on 12/Dec/20

Commented by mr W last updated on 12/Dec/20

very nice approach sir!    s=t((√3)±(√(4−t^2 )))  ⇒s_(max) =4.73565  s_(max)  is not at t=2, but at t=1.7047!    x_A =a=m+((s(√3))/2)(((2m)/( (√(1+4m^2 )))))   ...(iii)

$${very}\:{nice}\:{approach}\:{sir}! \\ $$$$ \\ $$$${s}={t}\left(\sqrt{\mathrm{3}}\pm\sqrt{\mathrm{4}−{t}^{\mathrm{2}} }\right) \\ $$$$\Rightarrow{s}_{{max}} =\mathrm{4}.\mathrm{73565} \\ $$$${s}_{{max}} \:{is}\:{not}\:{at}\:{t}=\mathrm{2},\:{but}\:{at}\:{t}=\mathrm{1}.\mathrm{7047}! \\ $$$$ \\ $$$${x}_{{A}} ={a}={m}+\frac{{s}\sqrt{\mathrm{3}}}{\mathrm{2}}\left(\frac{\mathrm{2}{m}}{\:\sqrt{\mathrm{1}+\mathrm{4}{m}^{\mathrm{2}} }}\right)\:\:\:...\left({iii}\right) \\ $$

Commented by ajfour last updated on 12/Dec/20

thank you Sir.

$${thank}\:{you}\:{Sir}. \\ $$

Commented by mr W last updated on 12/Dec/20

Commented by ajfour last updated on 12/Dec/20

   s=f(t)

$$\:\:\:{s}={f}\left({t}\right) \\ $$

Commented by mr W last updated on 12/Dec/20

exact value for s_(max) :  s=t((√3)+(√(4−t^2 )))  (ds/dt)=(√3)+2(√(4−t^2 ))−(4/( (√(4−t^2 ))))=0  let x=(√(4−t^2 ))  2x^2 +(√3)x−4=0  ⇒x=(((√(35))−(√3))/4)=(√(4−t^2 ))  ⇒t=(√(4−((((√(35))−(√3))/4))^2 ))  =((√(2((√(105))+13)))/4)≈1.70466  s_(max) =(√(4−((((√(35))−(√3))/4))^2 ))((√3)+(((√(35))−(√3))/4))  =((√(2(35(√(105))+359)))/8)≈4.73565

$${exact}\:{value}\:{for}\:{s}_{{max}} : \\ $$$${s}={t}\left(\sqrt{\mathrm{3}}+\sqrt{\mathrm{4}−{t}^{\mathrm{2}} }\right) \\ $$$$\frac{{ds}}{{dt}}=\sqrt{\mathrm{3}}+\mathrm{2}\sqrt{\mathrm{4}−{t}^{\mathrm{2}} }−\frac{\mathrm{4}}{\:\sqrt{\mathrm{4}−{t}^{\mathrm{2}} }}=\mathrm{0} \\ $$$${let}\:{x}=\sqrt{\mathrm{4}−{t}^{\mathrm{2}} } \\ $$$$\mathrm{2}{x}^{\mathrm{2}} +\sqrt{\mathrm{3}}{x}−\mathrm{4}=\mathrm{0} \\ $$$$\Rightarrow{x}=\frac{\sqrt{\mathrm{35}}−\sqrt{\mathrm{3}}}{\mathrm{4}}=\sqrt{\mathrm{4}−{t}^{\mathrm{2}} } \\ $$$$\Rightarrow{t}=\sqrt{\mathrm{4}−\left(\frac{\sqrt{\mathrm{35}}−\sqrt{\mathrm{3}}}{\mathrm{4}}\right)^{\mathrm{2}} } \\ $$$$=\frac{\sqrt{\mathrm{2}\left(\sqrt{\mathrm{105}}+\mathrm{13}\right)}}{\mathrm{4}}\approx\mathrm{1}.\mathrm{70466} \\ $$$${s}_{{max}} =\sqrt{\mathrm{4}−\left(\frac{\sqrt{\mathrm{35}}−\sqrt{\mathrm{3}}}{\mathrm{4}}\right)^{\mathrm{2}} }\left(\sqrt{\mathrm{3}}+\frac{\sqrt{\mathrm{35}}−\sqrt{\mathrm{3}}}{\mathrm{4}}\right) \\ $$$$=\frac{\sqrt{\mathrm{2}\left(\mathrm{35}\sqrt{\mathrm{105}}+\mathrm{359}\right)}}{\mathrm{8}}\approx\mathrm{4}.\mathrm{73565} \\ $$

Commented by ajfour last updated on 12/Dec/20

Wonderful, Sir, good analysis!

$${Wonderful},\:{Sir},\:{good}\:{analysis}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com