Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 125684 by mnjuly1970 last updated on 13/Dec/20

                   .... INTEGRAL...      prove  that :        ∫_0 ^( ∞) x^3 {ln(1+e^x ) −x}dx=((45)/8) ζ( 5 )

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:....\:\mathrm{INTEGRAL}... \\ $$$$\:\:\:\:\mathrm{prove}\:\:\mathrm{that}\:: \\ $$$$\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\infty} {x}^{\mathrm{3}} \left\{{ln}\left(\mathrm{1}+{e}^{{x}} \right)\:−{x}\right\}{dx}=\frac{\mathrm{45}}{\mathrm{8}}\:\zeta\left(\:\mathrm{5}\:\right) \\ $$$$ \\ $$

Answered by Dwaipayan Shikari last updated on 13/Dec/20

∫_0 ^∞ x^3 log(((1+e^x )/e^x ))dx  =∫_0 ^∞ x^3 log(1+e^(−x) )dx  =Σ_(n=1) ^∞ (−1)^(n+1) (1/n)∫_0 ^∞ x^3 e^(−nx) dx  =Σ_(n=1) ^∞ (−1)^(n+1) (1/n^5 )∫_0 ^∞ Λ^3 e^(−Λ) dx       nx=Λ  =Σ_(n=1) ^∞ (((−1)^(n+1) )/n^5 )Γ(4)=6Σ_(n=1) ^∞ (((−1)^(n+1) )/n^5 )=((90)/(16))ζ(5)=((45)/8)ζ(5)  Note :  1+(1/2^5 )+(1/3^5 )+(1/4^5 )+...=ζ(5)  1−(1/2^5 )+(1/3^5 )−(1/4^5 )+..=S     S+ζ(5)=2(1+(1/3^5 )+(1/5^5 )+...)      (1+(1/3^5 )+(1/5^5 )+...)=ζ(5)(1−(1/2^5 ))  S=2ζ(5)−((ζ(5))/2^4 )−ζ(5)=ζ(5)((15)/(16))

$$\int_{\mathrm{0}} ^{\infty} {x}^{\mathrm{3}} {log}\left(\frac{\mathrm{1}+{e}^{{x}} }{{e}^{{x}} }\right){dx} \\ $$$$=\int_{\mathrm{0}} ^{\infty} {x}^{\mathrm{3}} {log}\left(\mathrm{1}+{e}^{−{x}} \right){dx} \\ $$$$=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} \frac{\mathrm{1}}{{n}}\int_{\mathrm{0}} ^{\infty} {x}^{\mathrm{3}} {e}^{−{nx}} {dx} \\ $$$$=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} \frac{\mathrm{1}}{{n}^{\mathrm{5}} }\int_{\mathrm{0}} ^{\infty} \Lambda^{\mathrm{3}} {e}^{−\Lambda} {dx}\:\:\:\:\:\:\:{nx}=\Lambda \\ $$$$=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} }{{n}^{\mathrm{5}} }\Gamma\left(\mathrm{4}\right)=\mathrm{6}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} }{{n}^{\mathrm{5}} }=\frac{\mathrm{90}}{\mathrm{16}}\zeta\left(\mathrm{5}\right)=\frac{\mathrm{45}}{\mathrm{8}}\zeta\left(\mathrm{5}\right) \\ $$$$\boldsymbol{{Note}}\:: \\ $$$$\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{5}} }+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{5}} }+\frac{\mathrm{1}}{\mathrm{4}^{\mathrm{5}} }+...=\zeta\left(\mathrm{5}\right) \\ $$$$\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{5}} }+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{5}} }−\frac{\mathrm{1}}{\mathrm{4}^{\mathrm{5}} }+..={S}\:\:\: \\ $$$${S}+\zeta\left(\mathrm{5}\right)=\mathrm{2}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{5}} }+\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{5}} }+...\right)\:\:\:\:\:\:\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{5}} }+\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{5}} }+...\right)=\zeta\left(\mathrm{5}\right)\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{5}} }\right) \\ $$$${S}=\mathrm{2}\zeta\left(\mathrm{5}\right)−\frac{\zeta\left(\mathrm{5}\right)}{\mathrm{2}^{\mathrm{4}} }−\zeta\left(\mathrm{5}\right)=\zeta\left(\mathrm{5}\right)\frac{\mathrm{15}}{\mathrm{16}} \\ $$

Commented by Dwaipayan Shikari last updated on 13/Dec/20

But i haven′t find the same sir!

$${But}\:{i}\:{haven}'{t}\:{find}\:{the}\:{same}\:{sir}! \\ $$

Commented by mnjuly1970 last updated on 13/Dec/20

thank you mr payan  you solution is very  nice  to me  final answer isn′t very  important...

$${thank}\:{you}\:{mr}\:{payan} \\ $$$${you}\:{solution}\:{is}\:{very} \\ $$$${nice} \\ $$$${to}\:{me}\:\:{final}\:{answer}\:{isn}'{t}\:{very} \\ $$$${important}... \\ $$$$ \\ $$

Commented by Dwaipayan Shikari last updated on 13/Dec/20

Commented by Dwaipayan Shikari last updated on 13/Dec/20

I think something wrong in question

$${I}\:{think}\:{something}\:{wrong}\:{in}\:{question} \\ $$

Commented by mnjuly1970 last updated on 13/Dec/20

you  are right.   i mistaked.sorry...

$${you}\:\:{are}\:{right}. \\ $$$$\:{i}\:{mistaked}.{sorry}... \\ $$

Commented by mnjuly1970 last updated on 13/Dec/20

Terms of Service

Privacy Policy

Contact: info@tinkutara.com