Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 125685 by Hassen_Timol last updated on 12/Dec/20

  Solve this differential equation         q_((t)) ′′  +  (1/(LC)) q_((t))   =  (V/L)    with (L,C,V) ∈ R^3

Solvethisdifferentialequationq(t)+1LCq(t)=VLwith(L,C,V)R3

Answered by mr W last updated on 13/Dec/20

q(t)=A cos ωt+B sin ωt+VC  with ω=(√(1/(LC)))

q(t)=Acosωt+Bsinωt+VCwithω=1LC

Commented by Hassen_Timol last updated on 13/Dec/20

Thank you a lot Sir

ThankyoualotSir

Commented by Hassen_Timol last updated on 13/Dec/20

Isn't it ...+VC ? not VC² ? because V*L*C/L=VC

Commented by mr W last updated on 13/Dec/20

yes, VC.

yes,VC.

Answered by mathmax by abdo last updated on 14/Dec/20

h→r^2  +(1/(LC))=0 ⇒r=+^− i(√(1/(LC))) ⇒q_h (t)=ae^(i(√(1/(LC))))  +be^(−i(√(1/(LC))))   =αcos((t/( (√(LC)))))+β sin((t/( (√(LC))))) =αu_1  +βu_2   let w=(1/( (√(LC))))  W(u_1 ,u_2 )= determinant (((cos(wt)          sin(wt))),((−wsin(wt)        wcos(wt))))=w≠0  W_1 = determinant (((o         sin(wt))),(((V/L)        wcos(wt))))=−(V/L)sin(wt)  W_2 = determinant (((cos(wt)        0)),((−wsin(wt)  (V/L))))=(V/L)cos(wt)  v_1 =∫ (w_1 /w)dt =−(V/L)∫  ((sin(wt))/w) dt =−(V/L)×(1/w^2 )cos(wt)  =(V/L)×LC cos(wt) =VC cos(wt)  v_2 =∫  (w_2 /w)dt =(V/L)∫((cos(wt))/w)dt =(V/(L ))×(1/w^2 )sin(wt)=VC sin(wt) ⇒  q_p =u_1 v_1  +u_2 v_2 =cos(wt)VC cos(wt)+sin(wt)VC sin(wt)  =VC(cos^2 (wt)+sin^2 (wt))=VC ⇒  q(t) =q_h (t)+q_p (t)=α cos(wt)+βsin(wt)+VC  and w =(1/( (√(LC))))

hr2+1LC=0r=+i1LCqh(t)=aei1LC+bei1LC=αcos(tLC)+βsin(tLC)=αu1+βu2letw=1LCW(u1,u2)=|cos(wt)sin(wt)wsin(wt)wcos(wt)|=w0W1=|osin(wt)VLwcos(wt)|=VLsin(wt)W2=|cos(wt)0wsin(wt)VL|=VLcos(wt)v1=w1wdt=VLsin(wt)wdt=VL×1w2cos(wt)=VL×LCcos(wt)=VCcos(wt)v2=w2wdt=VLcos(wt)wdt=VL×1w2sin(wt)=VCsin(wt)qp=u1v1+u2v2=cos(wt)VCcos(wt)+sin(wt)VCsin(wt)=VC(cos2(wt)+sin2(wt))=VCq(t)=qh(t)+qp(t)=αcos(wt)+βsin(wt)+VCandw=1LC

Terms of Service

Privacy Policy

Contact: info@tinkutara.com