Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 125697 by aurpeyz last updated on 13/Dec/20

what is the largest coefficient of   (4+3x)^(−5) ?

$${what}\:{is}\:{the}\:{largest}\:{coefficient}\:{of}\: \\ $$$$\left(\mathrm{4}+\mathrm{3}{x}\right)^{−\mathrm{5}} ? \\ $$

Answered by mr W last updated on 13/Dec/20

(4+3x)^(−5)   =4^(−5) [1−(−((3x)/4))]^(−5)   =(1/(1024))Σ_(k=0) ^∞ C_4 ^(k+4) (−((3x)/4))^k   =(1/(1024))Σ_(k=0) ^∞ (−1)^k C_4 ^(k+4) ((3/4))^k x^k   =Σ_(k=0) ^∞ a_k x^k   a_k =(((−1)^k )/(1024))C_4 ^(k+4) ((3/4))^k   positive coef. when k=even=2n  negative coef. when k=odd=2n+1  to find the largest coef. we only  need to look at positive coefficients,  i.e. k=2n.  a_(2n) =(1/(1024))C_4 ^(2n+4) ((3/4))^(2n)   a_(2(n+1)) =(1/(1024))C_4 ^(2n+6) ((3/4))^(2(n+1))   to find the largest coef. we need to  find the smallest n satisfying  a_(2n) >a_(2(n+1))   i.e.  (1/(1024))C_4 ^(2n+4) ((3/4))^(2n) >(1/(1024))C_4 ^(2n+6) ((3/4))^(2(n+1))   C_4 ^(2n+4) >C_4 ^(2n+6) ((3/4))^2   (((2n+4)!)/(4!(2n)!))>(((2n+6)!)/(4!(2n+2)!))((3/4))^2   ((16)/9)>(((n+3)(2n+5))/((n+1)(2n+1)))  16(2n^2 +3n+1)>9(2n^2 +11n+15)  14n^2 −51n−119>0  n>((51+(√(51^2 +4×14×119)))/(28))≈5.3  the smallest n is 6, i.e. the largest  coefficient is a_(12) :  a_(12) =(1/(1024))C_4 ^(16) ((3/4))^(12) =((241 805 655)/(4 294 967 296))    you can check this with WolframAlpha:

$$\left(\mathrm{4}+\mathrm{3}{x}\right)^{−\mathrm{5}} \\ $$$$=\mathrm{4}^{−\mathrm{5}} \left[\mathrm{1}−\left(−\frac{\mathrm{3}{x}}{\mathrm{4}}\right)\right]^{−\mathrm{5}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{1024}}\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}{C}_{\mathrm{4}} ^{{k}+\mathrm{4}} \left(−\frac{\mathrm{3}{x}}{\mathrm{4}}\right)^{{k}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{1024}}\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{k}} {C}_{\mathrm{4}} ^{{k}+\mathrm{4}} \left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{{k}} {x}^{{k}} \\ $$$$=\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}{a}_{{k}} {x}^{{k}} \\ $$$${a}_{{k}} =\frac{\left(−\mathrm{1}\right)^{{k}} }{\mathrm{1024}}{C}_{\mathrm{4}} ^{{k}+\mathrm{4}} \left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{{k}} \\ $$$${positive}\:{coef}.\:{when}\:{k}={even}=\mathrm{2}{n} \\ $$$${negative}\:{coef}.\:{when}\:{k}={odd}=\mathrm{2}{n}+\mathrm{1} \\ $$$${to}\:{find}\:{the}\:{largest}\:{coef}.\:{we}\:{only} \\ $$$${need}\:{to}\:{look}\:{at}\:{positive}\:{coefficients}, \\ $$$${i}.{e}.\:{k}=\mathrm{2}{n}. \\ $$$${a}_{\mathrm{2}{n}} =\frac{\mathrm{1}}{\mathrm{1024}}{C}_{\mathrm{4}} ^{\mathrm{2}{n}+\mathrm{4}} \left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{2}{n}} \\ $$$${a}_{\mathrm{2}\left({n}+\mathrm{1}\right)} =\frac{\mathrm{1}}{\mathrm{1024}}{C}_{\mathrm{4}} ^{\mathrm{2}{n}+\mathrm{6}} \left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{2}\left({n}+\mathrm{1}\right)} \\ $$$${to}\:{find}\:{the}\:{largest}\:{coef}.\:{we}\:{need}\:{to} \\ $$$${find}\:{the}\:{smallest}\:{n}\:{satisfying} \\ $$$${a}_{\mathrm{2}{n}} >{a}_{\mathrm{2}\left({n}+\mathrm{1}\right)} \\ $$$${i}.{e}. \\ $$$$\frac{\mathrm{1}}{\mathrm{1024}}{C}_{\mathrm{4}} ^{\mathrm{2}{n}+\mathrm{4}} \left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{2}{n}} >\frac{\mathrm{1}}{\mathrm{1024}}{C}_{\mathrm{4}} ^{\mathrm{2}{n}+\mathrm{6}} \left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{2}\left({n}+\mathrm{1}\right)} \\ $$$${C}_{\mathrm{4}} ^{\mathrm{2}{n}+\mathrm{4}} >{C}_{\mathrm{4}} ^{\mathrm{2}{n}+\mathrm{6}} \left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{2}} \\ $$$$\frac{\left(\mathrm{2}{n}+\mathrm{4}\right)!}{\mathrm{4}!\left(\mathrm{2}{n}\right)!}>\frac{\left(\mathrm{2}{n}+\mathrm{6}\right)!}{\mathrm{4}!\left(\mathrm{2}{n}+\mathrm{2}\right)!}\left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{2}} \\ $$$$\frac{\mathrm{16}}{\mathrm{9}}>\frac{\left({n}+\mathrm{3}\right)\left(\mathrm{2}{n}+\mathrm{5}\right)}{\left({n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)} \\ $$$$\mathrm{16}\left(\mathrm{2}{n}^{\mathrm{2}} +\mathrm{3}{n}+\mathrm{1}\right)>\mathrm{9}\left(\mathrm{2}{n}^{\mathrm{2}} +\mathrm{11}{n}+\mathrm{15}\right) \\ $$$$\mathrm{14}{n}^{\mathrm{2}} −\mathrm{51}{n}−\mathrm{119}>\mathrm{0} \\ $$$${n}>\frac{\mathrm{51}+\sqrt{\mathrm{51}^{\mathrm{2}} +\mathrm{4}×\mathrm{14}×\mathrm{119}}}{\mathrm{28}}\approx\mathrm{5}.\mathrm{3} \\ $$$${the}\:{smallest}\:{n}\:{is}\:\mathrm{6},\:{i}.{e}.\:{the}\:{largest} \\ $$$${coefficient}\:{is}\:{a}_{\mathrm{12}} : \\ $$$${a}_{\mathrm{12}} =\frac{\mathrm{1}}{\mathrm{1024}}{C}_{\mathrm{4}} ^{\mathrm{16}} \left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{12}} =\frac{\mathrm{241}\:\mathrm{805}\:\mathrm{655}}{\mathrm{4}\:\mathrm{294}\:\mathrm{967}\:\mathrm{296}} \\ $$$$ \\ $$$${you}\:{can}\:{check}\:{this}\:{with}\:{WolframAlpha}: \\ $$

Commented by mr W last updated on 13/Dec/20

Commented by aurpeyz last updated on 13/Dec/20

wow. this is so explicit. i cant   appreciate you enough. thanks

$${wow}.\:{this}\:{is}\:{so}\:{explicit}.\:{i}\:{cant}\: \\ $$$${appreciate}\:{you}\:{enough}.\:{thanks} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com