Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 12577 by tawa last updated on 26/Apr/17

Find the area generated when the curve  x = a(θ − sinθ), (1 − cosθ)  θ = 0, θ = π  rotates about x−axis through 2π radian.  Note: 1 − cosθ = 2 sin^2 ((θ/2))

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{area}\:\mathrm{generated}\:\mathrm{when}\:\mathrm{the}\:\mathrm{curve}\:\:\mathrm{x}\:=\:\mathrm{a}\left(\theta\:−\:\mathrm{sin}\theta\right),\:\left(\mathrm{1}\:−\:\mathrm{cos}\theta\right) \\ $$$$\theta\:=\:\mathrm{0},\:\theta\:=\:\pi\:\:\mathrm{rotates}\:\mathrm{about}\:\mathrm{x}−\mathrm{axis}\:\mathrm{through}\:\mathrm{2}\pi\:\mathrm{radian}. \\ $$$$\mathrm{Note}:\:\mathrm{1}\:−\:\mathrm{cos}\theta\:=\:\mathrm{2}\:\mathrm{sin}^{\mathrm{2}} \left(\frac{\theta}{\mathrm{2}}\right) \\ $$

Answered by mrW1 last updated on 26/Apr/17

x=a(θ−sin θ)  y=1−cos θ  A=2π∫_x_1  ^x_2  ydx=2πa∫(1−cos θ)(1−cos θ)dθ  =2πa∫4sin^4  (θ/2) dθ  =16πa∫_0 ^π sin^4  (θ/2) d(θ/2)  =16πa∫_0 ^(π/2) sin^4  t dt  =16πa[((sin 4t−8sin 2t+12t)/(32))]_0 ^(π/2)   =16πa((12)/(32))×(π/2)=3aπ^2

$${x}={a}\left(\theta−\mathrm{sin}\:\theta\right) \\ $$$${y}=\mathrm{1}−\mathrm{cos}\:\theta \\ $$$${A}=\mathrm{2}\pi\int_{{x}_{\mathrm{1}} } ^{{x}_{\mathrm{2}} } {ydx}=\mathrm{2}\pi{a}\int\left(\mathrm{1}−\mathrm{cos}\:\theta\right)\left(\mathrm{1}−\mathrm{cos}\:\theta\right){d}\theta \\ $$$$=\mathrm{2}\pi{a}\int\mathrm{4sin}^{\mathrm{4}} \:\frac{\theta}{\mathrm{2}}\:{d}\theta \\ $$$$=\mathrm{16}\pi{a}\int_{\mathrm{0}} ^{\pi} \mathrm{sin}^{\mathrm{4}} \:\frac{\theta}{\mathrm{2}}\:{d}\frac{\theta}{\mathrm{2}} \\ $$$$=\mathrm{16}\pi{a}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{sin}^{\mathrm{4}} \:{t}\:{dt} \\ $$$$=\mathrm{16}\pi{a}\left[\frac{\mathrm{sin}\:\mathrm{4}{t}−\mathrm{8sin}\:\mathrm{2}{t}+\mathrm{12}{t}}{\mathrm{32}}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \\ $$$$=\mathrm{16}\pi{a}\frac{\mathrm{12}}{\mathrm{32}}×\frac{\pi}{\mathrm{2}}=\mathrm{3}{a}\pi^{\mathrm{2}} \\ $$

Commented by tawa last updated on 26/Apr/17

God bless you sir.

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Answered by ajfour last updated on 26/Apr/17

Area generated = 2π∫_0 ^( x_1 ) ydx  A=2π∫_0 ^( π) a(1−cos θ)^2 dθ    ...(i)     =2π∫^( π) _0 a(1+cos θ)^2 dθ    ...(ii)  (i)+(ii) gives:  2A=2πa∫_0 ^( π) (2+2cos^2 θ)dθ  A=πa∫_0 ^( π) (3+cos 2θ)dθ      =πa[3θ+((sin 2θ)/2) ]_0 ^π   A=3𝛑^2 a .

$${Area}\:{generated}\:=\:\mathrm{2}\pi\int_{\mathrm{0}} ^{\:{x}_{\mathrm{1}} } {ydx} \\ $$$${A}=\mathrm{2}\pi\int_{\mathrm{0}} ^{\:\pi} {a}\left(\mathrm{1}−\mathrm{cos}\:\theta\right)^{\mathrm{2}} {d}\theta\:\:\:\:...\left({i}\right) \\ $$$$\:\:\:=\mathrm{2}\pi\underset{\mathrm{0}} {\int}^{\:\pi} {a}\left(\mathrm{1}+\mathrm{cos}\:\theta\right)^{\mathrm{2}} {d}\theta\:\:\:\:...\left({ii}\right) \\ $$$$\left({i}\right)+\left({ii}\right)\:{gives}: \\ $$$$\mathrm{2}{A}=\mathrm{2}\pi{a}\int_{\mathrm{0}} ^{\:\pi} \left(\mathrm{2}+\mathrm{2cos}\:^{\mathrm{2}} \theta\right){d}\theta \\ $$$${A}=\pi{a}\int_{\mathrm{0}} ^{\:\pi} \left(\mathrm{3}+\mathrm{cos}\:\mathrm{2}\theta\right){d}\theta \\ $$$$\:\:\:\:=\pi{a}\left[\mathrm{3}\theta+\frac{\mathrm{sin}\:\mathrm{2}\theta}{\mathrm{2}}\:\right]_{\mathrm{0}} ^{\pi} \\ $$$${A}=\mathrm{3}\boldsymbol{\pi}^{\mathrm{2}} \boldsymbol{{a}}\:. \\ $$

Commented by tawa last updated on 26/Apr/17

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com