Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 125782 by ajfour last updated on 13/Dec/20

Commented by ajfour last updated on 13/Dec/20

Find radius of the smaller circle.

$${Find}\:{radius}\:{of}\:{the}\:{smaller}\:{circle}. \\ $$

Commented by MJS_new last updated on 14/Dec/20

sorry I have no time...  can we find the equation of all circles  (x−m)^2 +(y−n)^2 =n^2  with 0≤m≤a  touching the upper half ellipse  y=(1/a)(√(a^2 −x^2 )) with 1<a  as a first step to solve this problem?

$$\mathrm{sorry}\:\mathrm{I}\:\mathrm{have}\:\mathrm{no}\:\mathrm{time}... \\ $$$$\mathrm{can}\:\mathrm{we}\:\mathrm{find}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{all}\:\mathrm{circles} \\ $$$$\left({x}−{m}\right)^{\mathrm{2}} +\left({y}−{n}\right)^{\mathrm{2}} ={n}^{\mathrm{2}} \:\mathrm{with}\:\mathrm{0}\leqslant{m}\leqslant{a} \\ $$$$\mathrm{touching}\:\mathrm{the}\:\mathrm{upper}\:\mathrm{half}\:\mathrm{ellipse} \\ $$$${y}=\frac{\mathrm{1}}{{a}}\sqrt{{a}^{\mathrm{2}} −{x}^{\mathrm{2}} }\:\mathrm{with}\:\mathrm{1}<{a} \\ $$$$\mathrm{as}\:\mathrm{a}\:\mathrm{first}\:\mathrm{step}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{this}\:\mathrm{problem}? \\ $$

Answered by mr W last updated on 14/Dec/20

let μ=(b/a), λ=(r/a)  say P(a cos θ, b sin θ)  tan ϕ=−((b cos θ)/(−a sin θ))=(μ/(tan θ))  a cos θ=(√(((b/2)+r)^2 −((b/2)−r)^2 ))+r sin ϕ  ⇒a cos θ=(√(2br))+((μr)/( (√(μ^2 +tan^2  θ))))   ...(i)  b sin  θ=r+r cos ϕ  ⇒b sin  θ=r[1+((tan θ)/( (√(μ^2 +tan^2  θ))))]   ...(ii)  (ii)÷(i):  μ tan θ=((r[1+((tan θ)/( (√(μ^2 +tan^2  θ))))])/( (√(2br))+((rμ)/( (√(μ^2 +tan^2  θ))))))  let t=tan^2  θ  μt=(((√λ)[1+(t/( (√(μ^2 +t^2 ))))])/( (√(2μ))+(((√λ)μ)/( (√(μ^2 +t^2 ))))))  (√λ)[1+(t/( (√(μ^2 +t^2 ))))]=(((√λ)μ^2 t)/( (√(μ^2 +t^2 ))))+μt(√(2μ))  ⇒λ=((2μ^3 t^2 )/([1+(((1−μ^2 )t)/( (√(μ^2 +t^2 ))))]^2 ))   ...(I)  from (ii):  ((μt)/( (√(1+t^2 ))))=λ[1+(t/( (√(μ^2 +t^2 ))))]  ⇒λ=((μt)/( (√(1+t^2 ))[1+(t/( (√(μ^2 +t^2 ))))]))   ...(II)  ⇒[1+(((1−μ^2 )t)/( (√(μ^2 +t^2 ))))]^2 =2μ^2 t(√(1+t^2 ))[1+(t/( (√(μ^2 +t^2 ))))]   ...(III)  we can get t from (III) and then λ  from (I) or (II).

$${let}\:\mu=\frac{{b}}{{a}},\:\lambda=\frac{{r}}{{a}} \\ $$$${say}\:{P}\left({a}\:\mathrm{cos}\:\theta,\:{b}\:\mathrm{sin}\:\theta\right) \\ $$$$\mathrm{tan}\:\varphi=−\frac{{b}\:\mathrm{cos}\:\theta}{−{a}\:\mathrm{sin}\:\theta}=\frac{\mu}{\mathrm{tan}\:\theta} \\ $$$${a}\:\mathrm{cos}\:\theta=\sqrt{\left(\frac{{b}}{\mathrm{2}}+{r}\right)^{\mathrm{2}} −\left(\frac{{b}}{\mathrm{2}}−{r}\right)^{\mathrm{2}} }+{r}\:\mathrm{sin}\:\varphi \\ $$$$\Rightarrow{a}\:\mathrm{cos}\:\theta=\sqrt{\mathrm{2}{br}}+\frac{\mu{r}}{\:\sqrt{\mu^{\mathrm{2}} +\mathrm{tan}^{\mathrm{2}} \:\theta}}\:\:\:...\left({i}\right) \\ $$$${b}\:\mathrm{sin}\:\:\theta={r}+{r}\:\mathrm{cos}\:\varphi \\ $$$$\Rightarrow{b}\:\mathrm{sin}\:\:\theta={r}\left[\mathrm{1}+\frac{\mathrm{tan}\:\theta}{\:\sqrt{\mu^{\mathrm{2}} +\mathrm{tan}^{\mathrm{2}} \:\theta}}\right]\:\:\:...\left({ii}\right) \\ $$$$\left({ii}\right)\boldsymbol{\div}\left({i}\right): \\ $$$$\mu\:\mathrm{tan}\:\theta=\frac{{r}\left[\mathrm{1}+\frac{\mathrm{tan}\:\theta}{\:\sqrt{\mu^{\mathrm{2}} +\mathrm{tan}^{\mathrm{2}} \:\theta}}\right]}{\:\sqrt{\mathrm{2}{br}}+\frac{{r}\mu}{\:\sqrt{\mu^{\mathrm{2}} +\mathrm{tan}^{\mathrm{2}} \:\theta}}} \\ $$$${let}\:{t}=\mathrm{tan}^{\mathrm{2}} \:\theta \\ $$$$\mu{t}=\frac{\sqrt{\lambda}\left[\mathrm{1}+\frac{\mathrm{t}}{\:\sqrt{\mu^{\mathrm{2}} +\mathrm{t}^{\mathrm{2}} }}\right]}{\:\sqrt{\mathrm{2}\mu}+\frac{\sqrt{\lambda}\mu}{\:\sqrt{\mu^{\mathrm{2}} +\mathrm{t}^{\mathrm{2}} }}} \\ $$$$\sqrt{\lambda}\left[\mathrm{1}+\frac{\mathrm{t}}{\:\sqrt{\mu^{\mathrm{2}} +\mathrm{t}^{\mathrm{2}} }}\right]=\frac{\sqrt{\lambda}\mu^{\mathrm{2}} {t}}{\:\sqrt{\mu^{\mathrm{2}} +{t}^{\mathrm{2}} }}+\mu{t}\sqrt{\mathrm{2}\mu} \\ $$$$\Rightarrow\lambda=\frac{\mathrm{2}\mu^{\mathrm{3}} {t}^{\mathrm{2}} }{\left[\mathrm{1}+\frac{\left(\mathrm{1}−\mu^{\mathrm{2}} \right){t}}{\:\sqrt{\mu^{\mathrm{2}} +\mathrm{t}^{\mathrm{2}} }}\right]^{\mathrm{2}} }\:\:\:...\left({I}\right) \\ $$$${from}\:\left({ii}\right): \\ $$$$\frac{\mu{t}}{\:\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}=\lambda\left[\mathrm{1}+\frac{\mathrm{t}}{\:\sqrt{\mu^{\mathrm{2}} +\mathrm{t}^{\mathrm{2}} }}\right] \\ $$$$\Rightarrow\lambda=\frac{\mu{t}}{\:\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }\left[\mathrm{1}+\frac{\mathrm{t}}{\:\sqrt{\mu^{\mathrm{2}} +\mathrm{t}^{\mathrm{2}} }}\right]}\:\:\:...\left({II}\right) \\ $$$$\Rightarrow\left[\mathrm{1}+\frac{\left(\mathrm{1}−\mu^{\mathrm{2}} \right){t}}{\:\sqrt{\mu^{\mathrm{2}} +\mathrm{t}^{\mathrm{2}} }}\right]^{\mathrm{2}} =\mathrm{2}\mu^{\mathrm{2}} {t}\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }\left[\mathrm{1}+\frac{\mathrm{t}}{\:\sqrt{\mu^{\mathrm{2}} +\mathrm{t}^{\mathrm{2}} }}\right]\:\:\:...\left({III}\right) \\ $$$${we}\:{can}\:{get}\:{t}\:{from}\:\left({III}\right)\:{and}\:{then}\:\lambda \\ $$$${from}\:\left({I}\right)\:{or}\:\left({II}\right). \\ $$

Commented by mr W last updated on 14/Dec/20

Commented by mr W last updated on 14/Dec/20

Commented by mr W last updated on 14/Dec/20

Commented by ajfour last updated on 14/Dec/20

Perfectly well managed, Sir!  Very pragmatic and wise sol^n .

$${Perfectly}\:{well}\:{managed},\:{Sir}! \\ $$$${Very}\:{pragmatic}\:{and}\:{wise}\:{sol}^{{n}} . \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com