Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 125790 by mohammad17 last updated on 13/Dec/20

Answered by liberty last updated on 13/Dec/20

 lim_(x→2)  (((x+2)(x−2))/(sin πx)) = 4×lim_(x→2)  [ ((x−2)/(sin πx)) ]   [ let x=2+t ∧ t→0 ]   = 4× lim_(t→0)  (t/(sin π(t+2))) = 4 ×lim_(t→0)  (t/(sin (2π+πt)))  = 4 × lim_(t→0)  (t/(sin πt)) = 4× lim_(t→0)   ((πt)/(πsin πt))  = (4/π) × lim_(t→0)  ((πt)/(sin πt)) = (4/π)×1=(4/π)

$$\:\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\:\frac{\left({x}+\mathrm{2}\right)\left({x}−\mathrm{2}\right)}{\mathrm{sin}\:\pi{x}}\:=\:\mathrm{4}×\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\:\left[\:\frac{{x}−\mathrm{2}}{\mathrm{sin}\:\pi{x}}\:\right] \\ $$$$\:\left[\:{let}\:{x}=\mathrm{2}+{t}\:\wedge\:{t}\rightarrow\mathrm{0}\:\right]\: \\ $$$$=\:\mathrm{4}×\:\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{t}}{\mathrm{sin}\:\pi\left({t}+\mathrm{2}\right)}\:=\:\mathrm{4}\:×\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{t}}{\mathrm{sin}\:\left(\mathrm{2}\pi+\pi{t}\right)} \\ $$$$=\:\mathrm{4}\:×\:\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{t}}{\mathrm{sin}\:\pi{t}}\:=\:\mathrm{4}×\:\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\frac{\pi{t}}{\pi\mathrm{sin}\:\pi{t}} \\ $$$$=\:\frac{\mathrm{4}}{\pi}\:×\:\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\pi{t}}{\mathrm{sin}\:\pi{t}}\:=\:\frac{\mathrm{4}}{\pi}×\mathrm{1}=\frac{\mathrm{4}}{\pi} \\ $$

Commented by mohammad17 last updated on 13/Dec/20

nise sir thank you

$${nise}\:{sir}\:{thank}\:{you} \\ $$

Answered by mathmax by abdo last updated on 14/Dec/20

let f(x)=((x^2 −4)/(sin(πx)))  ⇒f(x)=(((x−2)(x+2))/(sin(πx)))=_(x−2=t)    ((t(t+4))/(sin(π(t+2))))  =((t(t+4))/(sn(πt)))   we have x→2 ⇔t→0 ⇒((t(t+4))/(sin(πt)))=∼((t(t+4))/(πt))∼((t+4)/π)→(4/π)  ⇒lim_(x→2) f(x)=(4/π)

$$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{x}^{\mathrm{2}} −\mathrm{4}}{\mathrm{sin}\left(\pi\mathrm{x}\right)}\:\:\Rightarrow\mathrm{f}\left(\mathrm{x}\right)=\frac{\left(\mathrm{x}−\mathrm{2}\right)\left(\mathrm{x}+\mathrm{2}\right)}{\mathrm{sin}\left(\pi\mathrm{x}\right)}=_{\mathrm{x}−\mathrm{2}=\mathrm{t}} \:\:\:\frac{\mathrm{t}\left(\mathrm{t}+\mathrm{4}\right)}{\mathrm{sin}\left(\pi\left(\mathrm{t}+\mathrm{2}\right)\right)} \\ $$$$=\frac{\mathrm{t}\left(\mathrm{t}+\mathrm{4}\right)}{\mathrm{sn}\left(\pi\mathrm{t}\right)}\:\:\:\mathrm{we}\:\mathrm{have}\:\mathrm{x}\rightarrow\mathrm{2}\:\Leftrightarrow\mathrm{t}\rightarrow\mathrm{0}\:\Rightarrow\frac{\mathrm{t}\left(\mathrm{t}+\mathrm{4}\right)}{\mathrm{sin}\left(\pi\mathrm{t}\right)}=\sim\frac{\mathrm{t}\left(\mathrm{t}+\mathrm{4}\right)}{\pi\mathrm{t}}\sim\frac{\mathrm{t}+\mathrm{4}}{\pi}\rightarrow\frac{\mathrm{4}}{\pi} \\ $$$$\Rightarrow\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{2}} \mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{4}}{\pi} \\ $$

Answered by Dwaipayan Shikari last updated on 14/Dec/20

lim_(x→2) ((x^2 −4)/(sinπx))=lim_(x→2) −((x^2 −4)/(sin(2π−πx)))=lim_(x→2) −(((x−2)(x+2))/(π(2−x)))=((x+2)/π)=(4/π)

$$\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\frac{{x}^{\mathrm{2}} −\mathrm{4}}{{sin}\pi{x}}=\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}−\frac{{x}^{\mathrm{2}} −\mathrm{4}}{{sin}\left(\mathrm{2}\pi−\pi{x}\right)}=\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}−\frac{\left({x}−\mathrm{2}\right)\left({x}+\mathrm{2}\right)}{\pi\left(\mathrm{2}−{x}\right)}=\frac{{x}+\mathrm{2}}{\pi}=\frac{\mathrm{4}}{\pi} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com