Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 125857 by Dwaipayan Shikari last updated on 14/Dec/20

1+4((1/2))^7 +7(((1.3)/(2.4)))^7 +10(((1.3.5)/(2.4.6)))^7 +...

$$\mathrm{1}+\mathrm{4}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{7}} +\mathrm{7}\left(\frac{\mathrm{1}.\mathrm{3}}{\mathrm{2}.\mathrm{4}}\right)^{\mathrm{7}} +\mathrm{10}\left(\frac{\mathrm{1}.\mathrm{3}.\mathrm{5}}{\mathrm{2}.\mathrm{4}.\mathrm{6}}\right)^{\mathrm{7}} +... \\ $$

Answered by Olaf last updated on 14/Dec/20

S = 1+Σ_(n=1) ^∞ (1+3n)(Π_(k=1) ^n (((2k−1))/((2k))))^7   S = 1+Σ_(n=1) ^∞ (1+3n)((1/(2^n n!))Π_(k=1) ^n (2k−1))^7   S = 1+Σ_(n=1) ^∞ (1+3n)((1/(2^n n!))Π_(k=1) ^n (((2k−1)(2k))/((2k))))^7   S = 1+Σ_(n=1) ^∞ (1+3n)((((2n)!)/(2^(2n) n!^2 )))^7   Γ(n+(1/2)) = (((2n)!)/(2^(2n) n!))(√π)  S = 1+(1/π^(7/2) )Σ_(n=1) ^∞ (1+3n)(((Γ(n+(1/2)))/(Γ(n+1))))^7   ...to be continued...

$$\mathrm{S}\:=\:\mathrm{1}+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\mathrm{1}+\mathrm{3}{n}\right)\left(\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\frac{\left(\mathrm{2}{k}−\mathrm{1}\right)}{\left(\mathrm{2}{k}\right)}\right)^{\mathrm{7}} \\ $$$$\mathrm{S}\:=\:\mathrm{1}+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\mathrm{1}+\mathrm{3}{n}\right)\left(\frac{\mathrm{1}}{\mathrm{2}^{{n}} {n}!}\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\left(\mathrm{2}{k}−\mathrm{1}\right)\right)^{\mathrm{7}} \\ $$$$\mathrm{S}\:=\:\mathrm{1}+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\mathrm{1}+\mathrm{3}{n}\right)\left(\frac{\mathrm{1}}{\mathrm{2}^{{n}} {n}!}\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\frac{\left(\mathrm{2}{k}−\mathrm{1}\right)\left(\mathrm{2}{k}\right)}{\left(\mathrm{2}{k}\right)}\right)^{\mathrm{7}} \\ $$$$\mathrm{S}\:=\:\mathrm{1}+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\mathrm{1}+\mathrm{3}{n}\right)\left(\frac{\left(\mathrm{2}{n}\right)!}{\mathrm{2}^{\mathrm{2}{n}} {n}!^{\mathrm{2}} }\right)^{\mathrm{7}} \\ $$$$\Gamma\left({n}+\frac{\mathrm{1}}{\mathrm{2}}\right)\:=\:\frac{\left(\mathrm{2}{n}\right)!}{\mathrm{2}^{\mathrm{2}{n}} {n}!}\sqrt{\pi} \\ $$$$\mathrm{S}\:=\:\mathrm{1}+\frac{\mathrm{1}}{\pi^{\mathrm{7}/\mathrm{2}} }\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\mathrm{1}+\mathrm{3}{n}\right)\left(\frac{\Gamma\left({n}+\frac{\mathrm{1}}{\mathrm{2}}\right)}{\Gamma\left({n}+\mathrm{1}\right)}\right)^{\mathrm{7}} \\ $$$$...\mathrm{to}\:\mathrm{be}\:\mathrm{continued}... \\ $$

Commented by Dwaipayan Shikari last updated on 14/Dec/20

Great sir!

$${Great}\:{sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com