Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 125958 by bramlexs22 last updated on 15/Dec/20

    y dx +x(ln x −ln y−1)dy=0      where y(1)=0

ydx+x(lnxlny1)dy=0wherey(1)=0

Answered by Olaf last updated on 16/Dec/20

ydx+x(lnx−lny−1)dy = 0  Let y = xu  xudx+x(lnx−lnx−lnu−1)(udx+xdu) = 0  xudx−x(lnu+1)(udx+xdu) = 0  −x(ulnudx+xlnudu+xdu) = 0  ulnudx+x(lnu+1)du = 0  (((lnu+1)/(ulnu)))du = −(dx/x)  (du/u)+(du/(ulnu)) = −(dx/x)  ln∣u∣+ln∣lnu∣ = −ln∣x∣+C_1   lnx and lny exist ⇒ x>0 and u>0  lnu+ln∣lnu∣ = −lnx+C_1   ln(u∣lnu∣) = ln(C_2 /x)  u∣lnu∣ = (C_2 /x)  (y/x)∣ln(y/x)∣ = (C_2 /x)  y∣ln(y/x)∣ = C_2   ∣ln(y/x)∣ = (C_2 /y)  C_2 >0 and y>0 ⇒ ln(y/x) = (C_2 /y)  (y/x) = e^(C_2 /y)   x = ye^(−(C_2 /y))   x = ye^(C_3 /y)

ydx+x(lnxlny1)dy=0Lety=xuxudx+x(lnxlnxlnu1)(udx+xdu)=0xudxx(lnu+1)(udx+xdu)=0x(ulnudx+xlnudu+xdu)=0ulnudx+x(lnu+1)du=0(lnu+1ulnu)du=dxxduu+duulnu=dxxlnu+lnlnu=lnx+C1lnxandlnyexistx>0andu>0lnu+lnlnu=lnx+C1ln(ulnu)=lnC2xulnu=C2xyxlnyx=C2xylnyx=C2lnyx=C2yC2>0andy>0lnyx=C2yyx=eC2yx=yeC2yx=yeC3y

Answered by liberty last updated on 17/Dec/20

y dx = (1+ln y−ln x)x dy  (dy/dx) = (y/(x(1+ln y−ln x))) ; let y = zx   ⇔ z+x(dz/dx) = ((zx)/(x(1+ln zx−ln x)))  z+x (dz/dx) = (z/(1+ln z)) ; x (dz/dx) = ((−zln z)/(1+ln z))  ⇔(((1+ln z)dz)/(zln z)) = −(dx/x)  ∫ (dz/(zln z))+∫(dz/z) = −∫(dx/x)  ⇔ln z+ln (ln z)+ln x = C  ⇔ ln (zxln z)= C ⇒zxln z = C_1   ((y/x))xln ((y/x))=C_1  ⇒yln ((y/x))=C_1   ⇔(y/x) = e^(C_1 /y)  ; y(1)=0 ⇒not correct

ydx=(1+lnylnx)xdydydx=yx(1+lnylnx);lety=zxz+xdzdx=zxx(1+lnzxlnx)z+xdzdx=z1+lnz;xdzdx=zlnz1+lnz(1+lnz)dzzlnz=dxxdzzlnz+dzz=dxxlnz+ln(lnz)+lnx=Cln(zxlnz)=Czxlnz=C1(yx)xln(yx)=C1yln(yx)=C1yx=eC1y;y(1)=0notcorrect

Terms of Service

Privacy Policy

Contact: info@tinkutara.com