Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 126039 by snipers237 last updated on 16/Dec/20

Let A=[2;∞[^2   and f ∈(R×R)^R  such as   f(x,y)=((χ_A (x,y))/(E(x)^(E(y)) ))  where χ_A  is the caracteristic function of A   Prove that f is a density of a probability P

$${Let}\:{A}=\left[\mathrm{2};\infty\left[^{\mathrm{2}} \:\:{and}\:{f}\:\in\left(\mathbb{R}×\mathbb{R}\right)^{\mathbb{R}} \:{such}\:{as}\:\right.\right. \\ $$$${f}\left({x},{y}\right)=\frac{\chi_{{A}} \left({x},{y}\right)}{{E}\left({x}\right)^{{E}\left({y}\right)} }\:\:{where}\:\chi_{{A}} \:{is}\:{the}\:{caracteristic}\:{function}\:{of}\:{A} \\ $$$$\:{Prove}\:{that}\:{f}\:{is}\:{a}\:{density}\:{of}\:{a}\:{probability}\:{P} \\ $$

Answered by mindispower last updated on 18/Dec/20

∫∫_A f(x,y)dxdy=  Σ_(n≥2) .Σ_(m≥2) (1/n^m )=Σ_(n≥2) (1/n^2 ).(1/((1−(1/n))))  =Σ(1/(n(n−1)))=Σ_(n≥2) ((1/(n−1))−(1/n))=lim_(M→∞) Σ_2 ^M ((1/(n−1))−(1/n))  =lim_(M→∞) 1−(1/M)=1  ∫_A fdA=1  f >0   f density of probability

$$\int\int_{{A}} {f}\left({x},{y}\right){dxdy}= \\ $$$$\underset{{n}\geqslant\mathrm{2}} {\sum}.\underset{{m}\geqslant\mathrm{2}} {\sum}\frac{\mathrm{1}}{{n}^{{m}} }=\underset{{n}\geqslant\mathrm{2}} {\sum}\frac{\mathrm{1}}{{n}^{\mathrm{2}} }.\frac{\mathrm{1}}{\left(\mathrm{1}−\frac{\mathrm{1}}{{n}}\right)} \\ $$$$=\Sigma\frac{\mathrm{1}}{{n}\left({n}−\mathrm{1}\right)}=\underset{{n}\geqslant\mathrm{2}} {\sum}\left(\frac{\mathrm{1}}{{n}−\mathrm{1}}−\frac{\mathrm{1}}{{n}}\right)=\underset{{M}\rightarrow\infty} {\mathrm{lim}}\underset{\mathrm{2}} {\overset{{M}} {\sum}}\left(\frac{\mathrm{1}}{{n}−\mathrm{1}}−\frac{\mathrm{1}}{{n}}\right) \\ $$$$=\underset{{M}\rightarrow\infty} {\mathrm{lim}1}−\frac{\mathrm{1}}{{M}}=\mathrm{1} \\ $$$$\int_{{A}} {fdA}=\mathrm{1} \\ $$$${f}\:>\mathrm{0}\: \\ $$$${f}\:{density}\:{of}\:{probability} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com