Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 126056 by TITA last updated on 16/Dec/20

Commented by TITA last updated on 16/Dec/20

please help

$$\mathrm{please}\:\mathrm{help} \\ $$

Answered by Olaf last updated on 16/Dec/20

((x^x −1)/(ln(x+1))) = ((e^(xlnx) −1)/(ln(x+1)))  La limite en 0^+  est de la forme (0^+ /0^+ ).  C′est une forme indeterminee.  On utilise la regle de l′hopital :  lim_(x→0^+ ) ((f(x))/(g(x))) = lim_(x→0^+ ) ((f′(x))/(g′(x)))  donc on cherche :  lim_(x→0^+ )  (((1.lnx+x.(1/x))e^(xlnx) )/(1/(x+1)))  lim_(x→0^+ )  (x+1)(lnx+1)e^(xlnx)   de la forme 1×(−∞)×1 donc −∞

$$\frac{{x}^{{x}} −\mathrm{1}}{\mathrm{ln}\left({x}+\mathrm{1}\right)}\:=\:\frac{{e}^{{x}\mathrm{ln}{x}} −\mathrm{1}}{\mathrm{ln}\left({x}+\mathrm{1}\right)} \\ $$$$\mathrm{La}\:\mathrm{limite}\:\mathrm{en}\:\mathrm{0}^{+} \:\mathrm{est}\:\mathrm{de}\:\mathrm{la}\:\mathrm{forme}\:\frac{\mathrm{0}^{+} }{\mathrm{0}^{+} }. \\ $$$$\mathrm{C}'\mathrm{est}\:\mathrm{une}\:\mathrm{forme}\:\mathrm{indeterminee}. \\ $$$$\mathrm{On}\:\mathrm{utilise}\:\mathrm{la}\:\mathrm{regle}\:\mathrm{de}\:\mathrm{l}'\mathrm{hopital}\:: \\ $$$$\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\frac{{f}\left({x}\right)}{{g}\left({x}\right)}\:=\:\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\frac{{f}'\left({x}\right)}{{g}'\left({x}\right)} \\ $$$$\mathrm{donc}\:\mathrm{on}\:\mathrm{cherche}\:: \\ $$$$\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\frac{\left(\mathrm{1}.\mathrm{ln}{x}+{x}.\frac{\mathrm{1}}{{x}}\right){e}^{{x}\mathrm{ln}{x}} }{\mathrm{1}/\left({x}+\mathrm{1}\right)} \\ $$$$\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\left({x}+\mathrm{1}\right)\left(\mathrm{ln}{x}+\mathrm{1}\right){e}^{{x}\mathrm{ln}{x}} \\ $$$$\mathrm{de}\:\mathrm{la}\:\mathrm{forme}\:\mathrm{1}×\left(−\infty\right)×\mathrm{1}\:\mathrm{donc}\:−\infty \\ $$

Answered by Dwaipayan Shikari last updated on 16/Dec/20

lim_(x→0^+ ) ((e^(xlogx) −1)/(log(x+1)))=((1+xlog(x)−1)/x)       lim_(x→0)  log(x+1)=x and e^x =x+1  =log(x)→−∞

$$\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\frac{{e}^{{xlogx}} −\mathrm{1}}{{log}\left({x}+\mathrm{1}\right)}=\frac{\mathrm{1}+{xlog}\left({x}\right)−\mathrm{1}}{{x}}\:\:\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:{log}\left({x}+\mathrm{1}\right)={x}\:{and}\:{e}^{{x}} ={x}+\mathrm{1} \\ $$$$={log}\left({x}\right)\rightarrow−\infty \\ $$

Answered by 676597498 last updated on 17/Dec/20

as x→0  ln(x+1)→x−(x^2 /(2!))+ξ(x)  lim_(x→0^+ ) ((x^x −1)/(ln(x+1)))=lim_(x→0^+ ) ((x^x −1)/(x(1−(x/2))))  =lim_(x→0^+ ) ((x^(x−1) −(1/x))/(1−(x/2))) = −∞

$${as}\:{x}\rightarrow\mathrm{0} \\ $$$${ln}\left({x}+\mathrm{1}\right)\rightarrow{x}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}!}+\xi\left({x}\right) \\ $$$$\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\frac{{x}^{{x}} −\mathrm{1}}{{ln}\left({x}+\mathrm{1}\right)}=\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\frac{{x}^{{x}} −\mathrm{1}}{{x}\left(\mathrm{1}−\frac{{x}}{\mathrm{2}}\right)} \\ $$$$=\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\frac{{x}^{{x}−\mathrm{1}} −\frac{\mathrm{1}}{{x}}}{\mathrm{1}−\frac{{x}}{\mathrm{2}}}\:=\:−\infty \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com