All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 126073 by benjo_mathlover last updated on 17/Dec/20
Commented by benjo_mathlover last updated on 17/Dec/20
Thegraphofthedifferentiablefunctiongwithdomain−6⩽x⩽2isshowninthefigureabove.Theareasoftheregionsboundedbythex−axisandthegraphofgontheintervals[−6,−5][−5,−3],[−3,1]and[1,2]are9,1742and6respectively.Thegraphofghashorizontaltangentatx=−4,x=−3andx=−1.Lethbethefunctiondefinedbyh(x)=∫−3xg(t)dtfor−6⩽x⩽2.Findthevalueof(1)h(1)(2)h(−6)(3)thex−coordinateofeachcriticalpointofhontheinterval−6⩽x⩽2
Commented by liberty last updated on 17/Dec/20
(1)h(1)=∫−31g(t)dt;sinceg(t)⩽0ontheinterval−3⩽t⩽1;soh(1)=−[areaoftheregionboundedbythex−axison[−3,1]h(1)=−42.(2)h(−6)=∫−3−6g(t)dt=−∫−6−3g(t)dth(−6)=−[∫−6−5g(t)dt+∫−5−3g(t)dt]=−[9+(−17)]=8
Terms of Service
Privacy Policy
Contact: info@tinkutara.com