Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 126073 by benjo_mathlover last updated on 17/Dec/20

Commented by benjo_mathlover last updated on 17/Dec/20

The graph of the differentiable   function g with domain −6≤x≤2 is  shown in the figure above. The areas  of the regions bounded by the x−axis  and the graph of g on the intervals [−6,−5]  [−5,−3], [ −3,1 ] and [1,2] are 9,17  42 and 6 respectively . The graph of g   has horizontal tangent at x=−4 ,  x=−3 and x=−1. Let h be the  function defined by h(x)=∫_(−3) ^( x) g(t)dt  for −6≤x≤2 . Find the value of  (1) h(1)  (2)h(−6)  (3)the x−coordinate of each critical  point of h on the interval −6≤x≤2

Thegraphofthedifferentiablefunctiongwithdomain6x2isshowninthefigureabove.Theareasoftheregionsboundedbythexaxisandthegraphofgontheintervals[6,5][5,3],[3,1]and[1,2]are9,1742and6respectively.Thegraphofghashorizontaltangentatx=4,x=3andx=1.Lethbethefunctiondefinedbyh(x)=3xg(t)dtfor6x2.Findthevalueof(1)h(1)(2)h(6)(3)thexcoordinateofeachcriticalpointofhontheinterval6x2

Commented by liberty last updated on 17/Dec/20

(1) h(1) = ∫_(−3) ^( 1) g(t) dt ; since g(t)≤0 on the  interval −3≤t≤1 ; so h(1)=−[ area of the region                                            bounded by the x−axis on [−3,1 ]  h(1)=−42.   (2) h(−6)= ∫_(−3) ^( −6) g(t) dt = −∫_(−6) ^(−3) g(t)dt         h(−6)=−[ ∫_(−6) ^(−5) g(t)dt+∫_(−5) ^(−3) g(t)dt ]                      = −[ 9+(−17)] = 8

(1)h(1)=31g(t)dt;sinceg(t)0ontheinterval3t1;soh(1)=[areaoftheregionboundedbythexaxison[3,1]h(1)=42.(2)h(6)=36g(t)dt=63g(t)dth(6)=[65g(t)dt+53g(t)dt]=[9+(17)]=8

Terms of Service

Privacy Policy

Contact: info@tinkutara.com