Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 126105 by Mathgreat last updated on 17/Dec/20

1≤a;b;c;d≤2  ∣(1−a)(1−b)(1−c)(1−d)∣≤((abcd)/4)

$$\mathrm{1}\leqslant{a};{b};{c};{d}\leqslant\mathrm{2} \\ $$$$\mid\left(\mathrm{1}−{a}\right)\left(\mathrm{1}−{b}\right)\left(\mathrm{1}−{c}\right)\left(\mathrm{1}−{d}\right)\mid\leqslant\frac{{abcd}}{\mathrm{4}} \\ $$

Commented by Mathgreat last updated on 17/Dec/20

prove

$$\boldsymbol{{prove}} \\ $$

Answered by talminator2856791 last updated on 17/Dec/20

      → 1≤ a;b;c;d ≤ 2  ⊃      1..  0 ≤ a−1; b−1; c−1; d−1 ≤ 1      2..  −1 ≤ 1−a; 1−b; 1−c; 1−d ≤ 0     numerical values remain the same (only sign has changed)      ⇒ ∣(1−a)(1−b)(1−c)(1−d)∣≤((abcd)/4)      ≡ (a−1)(b−1)(c−1)(d−1) ≤ ((abcd)/4)         from 1.. it can be concluded that the maximum   of (a−1)(b−1)(c−1)(d−1) is 1 and that   2(a−1) ≤ a;  2(b−1) ≤ b;  2(c−1) ≤ c;  2(d−1) ≤ d        it follows that          2(a−1)2(b−1)2(c−1)2(d−1) ≤ abcd          16(a−1)(b−1)(c−1)(d−1) ≤ abcd          4(a−1)(b−1)(c−1)(d−1) ≤ ((abcd)/4)          (a−1)(b−1)(c−1)(d−1) ≤ 4(a−1)(b−1)(c−1)(d−1)       ⇒ (a−1)(b−1)(c−1)(d−1) ≤ ((abcd)/4)    ∴  ∣(1−a)(1−b)(1−c)(1−d)∣ ≤ ((abcd)/4)

$$\: \\ $$$$\:\:\:\rightarrow\:\mathrm{1}\leqslant\:{a};{b};{c};{d}\:\leqslant\:\mathrm{2}\:\:\supset \\ $$$$\:\:\:\:\mathrm{1}..\:\:\mathrm{0}\:\leqslant\:{a}−\mathrm{1};\:{b}−\mathrm{1};\:{c}−\mathrm{1};\:{d}−\mathrm{1}\:\leqslant\:\mathrm{1} \\ $$$$\:\:\:\:\mathrm{2}..\:\:−\mathrm{1}\:\leqslant\:\mathrm{1}−{a};\:\mathrm{1}−{b};\:\mathrm{1}−{c};\:\mathrm{1}−{d}\:\leqslant\:\mathrm{0}\:\: \\ $$$$\:\mathrm{numerical}\:\mathrm{values}\:\mathrm{remain}\:\mathrm{the}\:\mathrm{same}\:\left(\mathrm{only}\:\mathrm{sign}\:\mathrm{has}\:\mathrm{changed}\right) \\ $$$$\:\:\:\:\Rightarrow\:\mid\left(\mathrm{1}−{a}\right)\left(\mathrm{1}−{b}\right)\left(\mathrm{1}−{c}\right)\left(\mathrm{1}−{d}\right)\mid\leqslant\frac{{abcd}}{\mathrm{4}} \\ $$$$\:\:\:\:\equiv\:\left({a}−\mathrm{1}\right)\left({b}−\mathrm{1}\right)\left({c}−\mathrm{1}\right)\left({d}−\mathrm{1}\right)\:\leqslant\:\frac{{abcd}}{\mathrm{4}} \\ $$$$\:\:\:\: \\ $$$$\:\mathrm{from}\:\mathrm{1}..\:\mathrm{it}\:\mathrm{can}\:\mathrm{be}\:\mathrm{concluded}\:\mathrm{that}\:\mathrm{the}\:\mathrm{maximum} \\ $$$$\:\mathrm{of}\:\left({a}−\mathrm{1}\right)\left({b}−\mathrm{1}\right)\left({c}−\mathrm{1}\right)\left({d}−\mathrm{1}\right)\:\mathrm{is}\:\mathrm{1}\:\mathrm{and}\:\mathrm{that} \\ $$$$\:\mathrm{2}\left({a}−\mathrm{1}\right)\:\leqslant\:{a};\:\:\mathrm{2}\left({b}−\mathrm{1}\right)\:\leqslant\:{b};\:\:\mathrm{2}\left({c}−\mathrm{1}\right)\:\leqslant\:{c};\:\:\mathrm{2}\left({d}−\mathrm{1}\right)\:\leqslant\:{d} \\ $$$$\: \\ $$$$\:\:\:\mathrm{it}\:\mathrm{follows}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\:\mathrm{2}\left({a}−\mathrm{1}\right)\mathrm{2}\left({b}−\mathrm{1}\right)\mathrm{2}\left({c}−\mathrm{1}\right)\mathrm{2}\left({d}−\mathrm{1}\right)\:\leqslant\:{abcd} \\ $$$$\:\:\:\:\:\:\:\:\mathrm{16}\left({a}−\mathrm{1}\right)\left({b}−\mathrm{1}\right)\left({c}−\mathrm{1}\right)\left({d}−\mathrm{1}\right)\:\leqslant\:{abcd} \\ $$$$\:\:\:\:\:\:\:\:\mathrm{4}\left({a}−\mathrm{1}\right)\left({b}−\mathrm{1}\right)\left({c}−\mathrm{1}\right)\left({d}−\mathrm{1}\right)\:\leqslant\:\frac{{abcd}}{\mathrm{4}} \\ $$$$\:\:\:\:\:\:\:\:\left({a}−\mathrm{1}\right)\left({b}−\mathrm{1}\right)\left({c}−\mathrm{1}\right)\left({d}−\mathrm{1}\right)\:\leqslant\:\mathrm{4}\left({a}−\mathrm{1}\right)\left({b}−\mathrm{1}\right)\left({c}−\mathrm{1}\right)\left({d}−\mathrm{1}\right) \\ $$$$\: \\ $$$$\:\:\Rightarrow\:\left({a}−\mathrm{1}\right)\left({b}−\mathrm{1}\right)\left({c}−\mathrm{1}\right)\left({d}−\mathrm{1}\right)\:\leqslant\:\frac{{abcd}}{\mathrm{4}} \\ $$$$\:\:\therefore\:\:\mid\left(\mathrm{1}−{a}\right)\left(\mathrm{1}−{b}\right)\left(\mathrm{1}−{c}\right)\left(\mathrm{1}−{d}\right)\mid\:\leqslant\:\frac{{abcd}}{\mathrm{4}} \\ $$$$\: \\ $$$$\: \\ $$$$\: \\ $$$$\: \\ $$$$\:\:\:\:\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com