Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 12612 by frank ntulah last updated on 26/Apr/17

Use Newtown Raphson method to find aproximate  value of  X=(√(((7/(x+1))))) ,starting with x_0 =2.  perform 4 iteration and all iteration   should be presented in 4 decimal places

$$\mathrm{Use}\:\mathrm{Newtown}\:\mathrm{Raphson}\:\mathrm{method}\:\mathrm{to}\:\mathrm{find}\:\mathrm{aproximate} \\ $$$$\mathrm{value}\:\mathrm{of}\:\:\boldsymbol{{X}}=\sqrt{\left(\frac{\mathrm{7}}{\boldsymbol{{x}}+\mathrm{1}}\right)}\:,\mathrm{starting}\:\mathrm{with}\:\boldsymbol{{x}}_{\mathrm{0}} =\mathrm{2}. \\ $$$$\boldsymbol{{perform}}\:\mathrm{4}\:\boldsymbol{{iteration}}\:\boldsymbol{{and}}\:\boldsymbol{{all}}\:\boldsymbol{{iteration}}\: \\ $$$$\boldsymbol{{should}}\:\boldsymbol{{be}}\:\boldsymbol{{presented}}\:\boldsymbol{{in}}\:\mathrm{4}\:\boldsymbol{{decimal}}\:\boldsymbol{{places}} \\ $$

Answered by mrW1 last updated on 26/Apr/17

f(x)=(√(7/(x+1)))−x  f′(x)=(1/(2(√(7/(x+1)))))×((−7)/((x+1)^2 ))−1  ((f(x))/(f′(x)))=−(((√(7/(x+1)))−x)/((1/(2(√(7/(x+1)))))×(7/((x+1)^2 ))+1))=−(((7/(x+1))−x(√(7/(x+1))))/((7/(2(x+1)^2 ))+(√(7/(x+1)))))  =−((14(x+1)−2x(√(7(x+1)^3 )))/(7+2(√(7(x+1)^3 ))))=g(x)  x_(n+1) =x_n −((f(x_n ))/(f′(x_n )))=x_n −g(x_n )    x_0 =2  x_1 =x_0 −g(x_0 )=2−g(2)=1.6234  x_2 =x_1 −g(x_1 )=1.6234−g(1.6234)=1.6310  x_3 =x_2 −g(x_2 )=1.6310−g(1.6310)=1.6311  x_4 =x_2 −g(x_3 )=1.6311−g(1.6311)=1.6311  ⇒x≈1.6311

$${f}\left({x}\right)=\sqrt{\frac{\mathrm{7}}{{x}+\mathrm{1}}}−{x} \\ $$$${f}'\left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\frac{\mathrm{7}}{{x}+\mathrm{1}}}}×\frac{−\mathrm{7}}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }−\mathrm{1} \\ $$$$\frac{{f}\left({x}\right)}{{f}'\left({x}\right)}=−\frac{\sqrt{\frac{\mathrm{7}}{{x}+\mathrm{1}}}−{x}}{\frac{\mathrm{1}}{\mathrm{2}\sqrt{\frac{\mathrm{7}}{{x}+\mathrm{1}}}}×\frac{\mathrm{7}}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }+\mathrm{1}}=−\frac{\frac{\mathrm{7}}{{x}+\mathrm{1}}−{x}\sqrt{\frac{\mathrm{7}}{{x}+\mathrm{1}}}}{\frac{\mathrm{7}}{\mathrm{2}\left({x}+\mathrm{1}\right)^{\mathrm{2}} }+\sqrt{\frac{\mathrm{7}}{{x}+\mathrm{1}}}} \\ $$$$=−\frac{\mathrm{14}\left({x}+\mathrm{1}\right)−\mathrm{2}{x}\sqrt{\mathrm{7}\left({x}+\mathrm{1}\right)^{\mathrm{3}} }}{\mathrm{7}+\mathrm{2}\sqrt{\mathrm{7}\left({x}+\mathrm{1}\right)^{\mathrm{3}} }}={g}\left({x}\right) \\ $$$${x}_{{n}+\mathrm{1}} ={x}_{{n}} −\frac{{f}\left({x}_{{n}} \right)}{{f}'\left({x}_{{n}} \right)}={x}_{{n}} −{g}\left({x}_{{n}} \right) \\ $$$$ \\ $$$${x}_{\mathrm{0}} =\mathrm{2} \\ $$$${x}_{\mathrm{1}} ={x}_{\mathrm{0}} −{g}\left({x}_{\mathrm{0}} \right)=\mathrm{2}−{g}\left(\mathrm{2}\right)=\mathrm{1}.\mathrm{6234} \\ $$$${x}_{\mathrm{2}} ={x}_{\mathrm{1}} −{g}\left({x}_{\mathrm{1}} \right)=\mathrm{1}.\mathrm{6234}−{g}\left(\mathrm{1}.\mathrm{6234}\right)=\mathrm{1}.\mathrm{6310} \\ $$$${x}_{\mathrm{3}} ={x}_{\mathrm{2}} −{g}\left({x}_{\mathrm{2}} \right)=\mathrm{1}.\mathrm{6310}−{g}\left(\mathrm{1}.\mathrm{6310}\right)=\mathrm{1}.\mathrm{6311} \\ $$$${x}_{\mathrm{4}} ={x}_{\mathrm{2}} −{g}\left({x}_{\mathrm{3}} \right)=\mathrm{1}.\mathrm{6311}−{g}\left(\mathrm{1}.\mathrm{6311}\right)=\mathrm{1}.\mathrm{6311} \\ $$$$\Rightarrow{x}\approx\mathrm{1}.\mathrm{6311} \\ $$

Commented by frank ntulah last updated on 27/Apr/17

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com