Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 126179 by mathmax by abdo last updated on 17/Dec/20

let f(x)= e^(−2x)  actan (3x+1)  1)calculste f^((n)) (x) and f^((n)) (0)  2) if f(x)=Σ a_n x^n  determine the sequence a_n   3) calculate ∫_0 ^∞  f(x)dx

letf(x)=e2xactan(3x+1)1)calculstef(n)(x)andf(n)(0)2)iff(x)=Σanxndeterminethesequencean3)calculate0f(x)dx

Answered by mathmax by abdo last updated on 19/Dec/20

1) by lebniz formulae f^((n)) (x)=Σ_(k=0) ^n  C_n ^k  (arctan(3x+1))^((k)) (e^(−2x) )^()n−k))   =C_n ^o   arctan(3x+1)(−2)^n  e^(−2x)  +Σ_(k=1) ^n  C_n ^k (arctan(3x+1))^((k)) (−2)^(n−k)  e^(−2x)   let calculate  (arctan(3x+1))^k   we have  (dx/dx)(arctan(3x+1))=(3/(1+(3x+1)^2 )) ⇒(arctan(3x+1))^((k))  =3((1/((3x+1)^2 +1)))^((k−1))   =3((1/((3x+1+i)(3x+1−i))))^((k−1))  =(1/3)((1/(x+((1+i)/3))(x+((1−i)/3)))))^((k−1))   =(1/(3(((1−i)/3)−((1+i)/3))))((1/(x+((1+i)/3)))−(1/(x+((1−i)/3))))^((k−1))   =−(1/(2i))((1/(x+((√2)/3)e^((iπ)/4) ))−(1/(x+((√2)/3)e^(−((iπ)/4)) )))^((k−1))   =(i/2){  (((−1)^(k−1) (k−1)!)/((x+((√2)/3)e^((iπ)/4) )^k ))−(((−1)^(k−1) (k−1)!)/((x+((√2)/3)e^(−((iπ)/4)) )^k ))}  =(i/2)(−1)^(k−1) (k−1)!{  ((−2i Im(x+((√2)/3)e^((iπ)/4) )^k )/((x+((√2)/3)e^((iπ)/4) )^k (x+((√2)/3)e^(−((iπ)/4)) )^k ))} ⇒  f^((n)) (x)=(−2)^n  e^(−2x)  arctan(3x+1)+Σ_(k=1) ^n  C_n ^k  (−2)^(n−k)  e^(−2x) (−1)^k (k−1)!×((Im(x+((√2)/3)e^((iπ)/4) )^k )/((x+((√2)/3)e^((iπ)/4) )^k (x+((√2)/3)e^(−((iπ)/4)) )^k ))

1)bylebnizformulaef(n)(x)=k=0nCnk(arctan(3x+1))(k)(e2x))nk)=Cnoarctan(3x+1)(2)ne2x+k=1nCnk(arctan(3x+1))(k)(2)nke2xletcalculate(arctan(3x+1))kwehavedxdx(arctan(3x+1))=31+(3x+1)2(arctan(3x+1))(k)=3(1(3x+1)2+1)(k1)=3(1(3x+1+i)(3x+1i))(k1)=13(1x+1+i3)(x+1i3))(k1)=13(1i31+i3)(1x+1+i31x+1i3)(k1)=12i(1x+23eiπ41x+23eiπ4)(k1)=i2{(1)k1(k1)!(x+23eiπ4)k(1)k1(k1)!(x+23eiπ4)k}=i2(1)k1(k1)!{2iIm(x+23eiπ4)k(x+23eiπ4)k(x+23eiπ4)k}f(n)(x)=(2)ne2xarctan(3x+1)+k=1nCnk(2)nke2x(1)k(k1)!×Im(x+23eiπ4)k(x+23eiπ4)k(x+23eiπ4)k

Commented by mathmax by abdo last updated on 19/Dec/20

f^((n)) (0)=(−2)^n (π/4) +Σ_(k=1) ^n  (−2)^(n−k)  C_n ^k  (−1)^k (k−1)!×(((((√2)/3))^k sin(((kπ)/4)))/((((√2)/3))^k ))  f^((n)) (0)=(π/4)(−2)^n  +Σ_(k=1) ^n  (−1)^k (−2)^(n−k)  C_n ^k (k−1)!sin(((kπ)/4))

f(n)(0)=(2)nπ4+k=1n(2)nkCnk(1)k(k1)!×(23)ksin(kπ4)(23)kf(n)(0)=π4(2)n+k=1n(1)k(2)nkCnk(k1)!sin(kπ4)

Commented by mathmax by abdo last updated on 19/Dec/20

2)  f(x)=Σ a_n x^n  ⇒a_n =((f^((n)) (0))/(n!))  and f^((n)) (0) is known

2)f(x)=Σanxnan=f(n)(0)n!andf(n)(0)isknown

Commented by mathmax by abdo last updated on 19/Dec/20

sorry f^((n)) (0) =(π/4)(−2)^n  +Σ_(k=1) ^n  (−2)^(n−k)  C_n ^k  (−1)^k (k−1)!((3/( (√2))))^k  sin(((kπ)/4))

sorryf(n)(0)=π4(2)n+k=1n(2)nkCnk(1)k(k1)!(32)ksin(kπ4)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com