Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 126200 by Dwaipayan Shikari last updated on 18/Dec/20

(1/1^2 )−(1/2^3 )+(1/3^5 )−(1/4^7 )+(1/5^(11) )−(1/6^(13) )+....

$$\frac{\mathrm{1}}{\mathrm{1}^{\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{5}} }−\frac{\mathrm{1}}{\mathrm{4}^{\mathrm{7}} }+\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{11}} }−\frac{\mathrm{1}}{\mathrm{6}^{\mathrm{13}} }+.... \\ $$

Commented by Olaf last updated on 18/Dec/20

  S = Σ_(n=1) ^∞ (((−1)^(n+1) )/n^p_n  )  p_n  = Nth prime number  Is it the question sir ?

$$ \\ $$$$\mathrm{S}\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} }{{n}^{{p}_{{n}} } } \\ $$$${p}_{{n}} \:=\:\mathrm{Nth}\:\mathrm{prime}\:\mathrm{number} \\ $$$$\mathrm{Is}\:\mathrm{it}\:\mathrm{the}\:\mathrm{question}\:\mathrm{sir}\:? \\ $$

Commented by Dwaipayan Shikari last updated on 18/Dec/20

yes sir!

$${yes}\:{sir}! \\ $$

Commented by Olaf last updated on 18/Dec/20

  I have no idea how to calculate this but  maybe we can find lower and upper  bounds :  p_n  Nth prime number  1, 2, 3, 5, 7, 11, 13...    Felgner result in 1990 :  0,91nlnn < p_n  <1,7nlnn  S = Σ_(n=2) ^∞ (((−1)^n )/((n−1)^p_n  ))  Σ_(n=2) ^∞ (((−1)^n )/((n−1)^(1,7nlnn) )) < S < Σ_(n=2) ^∞ (((−1)^n )/((n−1)^(0,91nlnn) ))  ...  I don′t know if it is a good way.

$$ \\ $$$$\mathrm{I}\:\mathrm{have}\:\mathrm{no}\:\mathrm{idea}\:\mathrm{how}\:\mathrm{to}\:\mathrm{calculate}\:\mathrm{this}\:\mathrm{but} \\ $$$$\mathrm{maybe}\:\mathrm{we}\:\mathrm{can}\:\mathrm{find}\:\mathrm{lower}\:\mathrm{and}\:\mathrm{upper} \\ $$$$\mathrm{bounds}\:: \\ $$$${p}_{{n}} \:\mathrm{Nth}\:\mathrm{prime}\:\mathrm{number} \\ $$$$\mathrm{1},\:\mathrm{2},\:\mathrm{3},\:\mathrm{5},\:\mathrm{7},\:\mathrm{11},\:\mathrm{13}... \\ $$$$ \\ $$$$\mathrm{Felgner}\:\mathrm{result}\:\mathrm{in}\:\mathrm{1990}\:: \\ $$$$\mathrm{0},\mathrm{91}{n}\mathrm{ln}{n}\:<\:{p}_{{n}} \:<\mathrm{1},\mathrm{7}{n}\mathrm{ln}{n} \\ $$$$\mathrm{S}\:=\:\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left({n}−\mathrm{1}\right)^{{p}_{{n}} } } \\ $$$$\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left({n}−\mathrm{1}\right)^{\mathrm{1},\mathrm{7}{n}\mathrm{ln}{n}} }\:<\:\mathrm{S}\:<\:\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left({n}−\mathrm{1}\right)^{\mathrm{0},\mathrm{91}{n}\mathrm{ln}{n}} } \\ $$$$... \\ $$$$\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{know}\:\mathrm{if}\:\mathrm{it}\:\mathrm{is}\:\mathrm{a}\:\mathrm{good}\:\mathrm{way}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com