All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 128775 by bramlexs22 last updated on 10/Jan/21
∫dx(1−x)21−x2?
Answered by liberty last updated on 10/Jan/21
letφ=1+x1−x⇒x=φ2−1φ2+1anddx=4φ(φ2+1)2dφY=∫(φ2+1)38φ×4φ(φ2+1)2dφY=12∫(φ2+1)dφ=12(13φ3+φ)+CY=16(x+11−x+3)x+11−x+CY=2−x3−3xx+11−x+C
Answered by mr W last updated on 10/Jan/21
x=cosθ∫−sinθdθ(1−cosθ)2sinθ=−∫dθ(1−cosθ)2=−∫dθ4sin4θ2=−∫dθ22sin4θ2=3tan2θ2+16tan3θ2+C=3tan2(cos−1x2)+16tan3(cos−1x2)+C
Answered by mathmax by abdo last updated on 10/Jan/21
∫dx(1−x)21−x2changementx=sintgiveI=∫cosx(1−sint)2cosxdx=tan(t2)=u∫2du(1+u2)(1−2u1+u2)2=∫2du(u2+1)(u2+1−2uu2+1)2=2∫u2+1(u2−2u+1)2du=2∫u2−2u+1+2u(u2−2u+1)2du=2∫du(u2−2u+1)+2∫2u−2+2(u2−2u+1)2du=2∫du(u−1)2+2∫2u−2(u2−2u+1)2du+4∫du(u−1)4=−2u−1−2u2−2u+1+4×1−4+1(u−1)−4+1+C=21−u−2(1−u)2+43(1−u)3+C=21−tan(t2)−2(1−tan(t2))2+43(1−tan(t2))+C=103(1−tan(arcsinx2))−2(1−tan(arcsinx2))2+C
Terms of Service
Privacy Policy
Contact: info@tinkutara.com