Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 128775 by bramlexs22 last updated on 10/Jan/21

∫ (dx/((1−x)^2  (√(1−x^2 )))) ?

dx(1x)21x2?

Answered by liberty last updated on 10/Jan/21

 let ϕ = (√((1+x)/(1−x))) ⇒x = ((ϕ^2 −1)/(ϕ^2 +1)) and dx = ((4ϕ)/((ϕ^2 +1)^2 )) dϕ  Y = ∫ (((ϕ^2 +1)^3 )/(8ϕ)) × ((4ϕ)/((ϕ^2 +1)^2 )) dϕ  Y=(1/2)∫ (ϕ^2 +1)dϕ = (1/2)((1/3)ϕ^3  +ϕ)+C  Y= (1/6)(((x+1)/(1−x)) +3 ) (√((x+1)/(1−x))) + C  Y= ((2−x)/(3−3x)) (√((x+1)/(1−x))) + C

letφ=1+x1xx=φ21φ2+1anddx=4φ(φ2+1)2dφY=(φ2+1)38φ×4φ(φ2+1)2dφY=12(φ2+1)dφ=12(13φ3+φ)+CY=16(x+11x+3)x+11x+CY=2x33xx+11x+C

Answered by mr W last updated on 10/Jan/21

x=cos θ  ∫((−sin θ dθ)/((1−cos θ)^2 sin θ))  =−∫(dθ/((1−cos θ)^2 ))  =−∫(dθ/(4 sin^4  (θ/2)))  =−∫(d(θ/2)/(2 sin^4  (θ/2)))  =((3 tan^2  (θ/2)+1)/(6 tan^3  (θ/2)))+C  =((3 tan^2  (((cos^(−1) x)/2))+1)/(6 tan^3  (((cos^(−1) x)/2))))+C

x=cosθsinθdθ(1cosθ)2sinθ=dθ(1cosθ)2=dθ4sin4θ2=dθ22sin4θ2=3tan2θ2+16tan3θ2+C=3tan2(cos1x2)+16tan3(cos1x2)+C

Answered by mathmax by abdo last updated on 10/Jan/21

∫  (dx/((1−x)^2 (√(1−x^2 ))))  changement x=sint give  I =∫   ((cosx)/((1−sint)^2 cosx))dx =_(tan((t/2))=u) ∫  ((2du)/((1+u^2 )(1−((2u)/(1+u^2 )))^2 ))  =∫  ((2du)/((u^2 +1)(((u^2 +1−2u)/(u^2 +1)))^2 )) =2∫  ((u^2 +1)/((u^2 −2u+1)^2 ))du  =2 ∫  ((u^2 −2u+1 +2u)/((u^2 −2u+1)^2 ))du =2 ∫ (du/((u^2 −2u+1))) +2 ∫ ((2u−2 +2)/((u^2 −2u+1)^2 ))du  =2∫ (du/((u−1)^2 )) +2 ∫ ((2u−2)/((u^2 −2u+1)^2 ))du+4∫  (du/((u−1)^4 ))  =−(2/(u−1))−(2/(u^2 −2u+1)) +4 ×(1/(−4+1))(u−1)^(−4+1)  +C  =(2/(1−u))−(2/((1−u)^2 ))+(4/(3(1−u)^3 )) +C  =(2/(1−tan((t/2))))−(2/((1−tan((t/2)))^2 )) +(4/(3(1−tan((t/2))))) +C  =((10)/(3(1−tan(((arcsinx)/2)))))−(2/((1−tan(((arcsinx)/2)))^2 ))+C

dx(1x)21x2changementx=sintgiveI=cosx(1sint)2cosxdx=tan(t2)=u2du(1+u2)(12u1+u2)2=2du(u2+1)(u2+12uu2+1)2=2u2+1(u22u+1)2du=2u22u+1+2u(u22u+1)2du=2du(u22u+1)+22u2+2(u22u+1)2du=2du(u1)2+22u2(u22u+1)2du+4du(u1)4=2u12u22u+1+4×14+1(u1)4+1+C=21u2(1u)2+43(1u)3+C=21tan(t2)2(1tan(t2))2+43(1tan(t2))+C=103(1tan(arcsinx2))2(1tan(arcsinx2))2+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com