Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 126316 by benjo_mathlover last updated on 19/Dec/20

  ∫_( (√2)) ^(2e^(√2) ) ln (((e^x +e^(−x) )/(9(√x))))dx ?

2e22ln(ex+ex9x)dx?

Commented by liberty last updated on 19/Dec/20

∫ (ln( e^x (1+e^(−2x) ))−ln 9−(1/2)ln x)dx=  ∫x+ln (1+e^(−2x) )−ln 9−(1/2)ln x dx=  (1/2)x^2 −xln 9−(1/2)(xln x−x)+∫ln (1+e^(−2x) )dx=  (1/2)x^2 +(1/2)x−xln 9(√x) +∫ ln (1+e^(−2x) )dx=

(ln(ex(1+e2x))ln912lnx)dx=x+ln(1+e2x)ln912lnxdx=12x2xln912(xlnxx)+ln(1+e2x)dx=12x2+12xxln9x+ln(1+e2x)dx=

Commented by Olaf last updated on 19/Dec/20

Let u = e^(−x)   ∫ln(1+e^(−2x) )dx = −∫((ln(1+u^2 ))/u)du  (1/(1+u)) = Σ_(n=0) ^∞ (−1)^n u^n   (1/(1+u^2 )) = Σ_(n=0) ^∞ (−1)^n u^(2n)   ((2u)/(1+u^2 )) = 2Σ_(n=0) ^∞ (−1)^n u^(2n+1)   ln(1+u^2 ) = 2Σ_(n=0) ^∞ (−1)^n (u^(2n+2) /(2n+2))  −((ln(1+u^2 ))/u) = −2Σ_(n=0) ^∞ (−1)^n (u^(2n+1) /(2n+2))  −∫((ln(1+u^2 ))/u)du = −2Σ_(n=0) ^∞ (−1)^n (u^(2n+2) /((2n+2)^2 ))  −∫((ln(1+u^2 ))/u)du = (1/2)Σ_(n=1) ^∞ (−1)^n (u^(2n) /n^2 )  ∫ln(1+e^(−2x) )dx = (1/2)Σ_(n=1) ^∞ (−1)^n (e^(−2nx) /n^2 )

Letu=exln(1+e2x)dx=ln(1+u2)udu11+u=n=0(1)nun11+u2=n=0(1)nu2n2u1+u2=2n=0(1)nu2n+1ln(1+u2)=2n=0(1)nu2n+22n+2ln(1+u2)u=2n=0(1)nu2n+12n+2ln(1+u2)udu=2n=0(1)nu2n+2(2n+2)2ln(1+u2)udu=12n=1(1)nu2nn2ln(1+e2x)dx=12n=1(1)ne2nxn2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com