All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 126316 by benjo_mathlover last updated on 19/Dec/20
∫2e22ln(ex+e−x9x)dx?
Commented by liberty last updated on 19/Dec/20
∫(ln(ex(1+e−2x))−ln9−12lnx)dx=∫x+ln(1+e−2x)−ln9−12lnxdx=12x2−xln9−12(xlnx−x)+∫ln(1+e−2x)dx=12x2+12x−xln9x+∫ln(1+e−2x)dx=
Commented by Olaf last updated on 19/Dec/20
Letu=e−x∫ln(1+e−2x)dx=−∫ln(1+u2)udu11+u=∑∞n=0(−1)nun11+u2=∑∞n=0(−1)nu2n2u1+u2=2∑∞n=0(−1)nu2n+1ln(1+u2)=2∑∞n=0(−1)nu2n+22n+2−ln(1+u2)u=−2∑∞n=0(−1)nu2n+12n+2−∫ln(1+u2)udu=−2∑∞n=0(−1)nu2n+2(2n+2)2−∫ln(1+u2)udu=12∑∞n=1(−1)nu2nn2∫ln(1+e−2x)dx=12∑∞n=1(−1)ne−2nxn2
Terms of Service
Privacy Policy
Contact: info@tinkutara.com