Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 12635 by b.e.h.i.8.3.4.1.7@gmail.com last updated on 27/Apr/17

Answered by mrW1 last updated on 27/Apr/17

x^2 −2xtan ϕ−1  =x^2 −2xtan ϕ+tan^2  ϕ−1−tan^2  ϕ  =(x−tan ϕ)^2 −cosec^2  ϕ  =(x−tan ϕ+cosec ϕ)(x−tan ϕ−cosec ϕ)  (1/(x^2 −2xtan ϕ−1))=((cos ϕ)/2)((1/(x−tan ϕ−cosec ϕ))−(1/(x−tan ϕ+cosec ϕ)))  ∫(dx/(x^2 −2xtan ϕ−1))=((cos ϕ)/2)∫((1/(x−tan ϕ−cosec ϕ))−(1/(x−tan ϕ+cosec ϕ)))dx  =((cos ϕ)/2)×ln∣ ((x−tan ϕ−cosec ϕ)/(x−tan ϕ+cosec ϕ))∣+C  =((cos ϕ)/2)×ln∣ ((xcos ϕ−sin ϕ−1)/(xcos ϕ−sin ϕ+1))∣+C

x22xtanφ1=x22xtanφ+tan2φ1tan2φ=(xtanφ)2cosec2φ=(xtanφ+cosecφ)(xtanφcosecφ)1x22xtanφ1=cosφ2(1xtanφcosecφ1xtanφ+cosecφ)dxx22xtanφ1=cosφ2(1xtanφcosecφ1xtanφ+cosecφ)dx=cosφ2×lnxtanφcosecφxtanφ+cosecφ+C=cosφ2×lnxcosφsinφ1xcosφsinφ+1+C

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 27/Apr/17

thak you so much dear mrW1.  do you have any  idea for:  ∫(dx/(x^2 −2xtg𝛟+1))

thakyousomuchdearmrW1.doyouhaveanyideafor:dxx22xtgφ+1

Commented by mrW1 last updated on 27/Apr/17

x^2 −2xtan ϕ+1  =x^2 −2xtan ϕ+tan^2  ϕ+1−tan^2  ϕ  =(x−tan ϕ)^2 +1−tan^2  ϕ    ∫(dx/(x^2 −2xtan ϕ+1))  =∫(dx/((x−tan ϕ)^2 +1−tan^2  ϕ))  = { (((1/(√(1−tan^2  ϕ)))tan^(−1) (((x−tan ϕ)/(√(1−tan^2  ϕ))))+C     (if 1−tan^2  ϕ>0))),((−(1/(x−tan ϕ))      (if 1−tan^2  ϕ=0))),(((1/(2(√(tan^2  ϕ−1))))ln∣ ((x−tan ϕ−(√(tan^2  ϕ−1)))/(x−tan ϕ+(√(tan^2  ϕ−1))))∣+C      (if 1−tan^2  ϕ<0))) :}

x22xtanφ+1=x22xtanφ+tan2φ+1tan2φ=(xtanφ)2+1tan2φdxx22xtanφ+1=dx(xtanφ)2+1tan2φ={11tan2φtan1(xtanφ1tan2φ)+C(if1tan2φ>0)1xtanφ(if1tan2φ=0)12tan2φ1lnxtanφtan2φ1xtanφ+tan2φ1+C(if1tan2φ<0)

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 27/Apr/17

thak you my master.it is perfect and  amazing.good lock.

thakyoumymaster.itisperfectandamazing.goodlock.

Commented by mrW1 last updated on 28/Apr/17

thanks, the same to you!

thanks,thesametoyou!

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 28/Apr/17

Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 27/Apr/17

Terms of Service

Privacy Policy

Contact: info@tinkutara.com