Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 126391 by mathocean1 last updated on 20/Dec/20

  show that   m^2 +m and  2m+1 are prime betwen  them.

$$ \\ $$$${show}\:{that}\: \\ $$$${m}^{\mathrm{2}} +{m}\:{and}\:\:\mathrm{2}{m}+\mathrm{1}\:{are}\:{prime}\:{betwen} \\ $$$${them}. \\ $$

Answered by akornes last updated on 20/Dec/20

for m ε Z^∗ −{−1}    pgcd(m^2 +m ; 2m+1)=pgcd[m(m+1) ;m+(m+1)]            =pgcd[m;(m+1)]             =pgcd(m;1)             =1 so m^2 +m and 2m+1 are prime  betwen them

$${for}\:\mathrm{m}\:\epsilon\:\mathbb{Z}^{\ast} −\left\{−\mathrm{1}\right\} \\ $$$$ \\ $$$${pgcd}\left({m}^{\mathrm{2}} +{m}\:;\:\mathrm{2}{m}+\mathrm{1}\right)={pgcd}\left[{m}\left({m}+\mathrm{1}\right)\:;{m}+\left({m}+\mathrm{1}\right)\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:={pgcd}\left[{m};\left({m}+\mathrm{1}\right)\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:={pgcd}\left({m};\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\mathrm{1}\:{so}\:{m}^{\mathrm{2}} +{m}\:{and}\:\mathrm{2}{m}+\mathrm{1}\:{are}\:{prime} \\ $$$${betwen}\:{them} \\ $$

Commented by mathocean1 last updated on 20/Dec/20

thank you all

$${thank}\:{you}\:{all} \\ $$

Answered by mnjuly1970 last updated on 20/Dec/20

  (m^2 +m,2m+1)=d     {_(d∣2m+1) ^(d∣m^2 +m)  ⇒{_(d∣2m^2 +m) ^(d∣2m^2 +2m) ⇒d∣m      {_(d∣2m+1) ^(d∣m) ⇒{_(d∣2m+1) ^(d∣2m) ⇒d∣1⇒^(d∈N)  d=1 ✓

$$\:\:\left({m}^{\mathrm{2}} +{m},\mathrm{2}{m}+\mathrm{1}\right)={d} \\ $$$$\:\:\:\left\{_{{d}\mid\mathrm{2}{m}+\mathrm{1}} ^{{d}\mid{m}^{\mathrm{2}} +{m}} \:\Rightarrow\left\{_{{d}\mid\mathrm{2}{m}^{\mathrm{2}} +{m}} ^{{d}\mid\mathrm{2}{m}^{\mathrm{2}} +\mathrm{2}{m}} \Rightarrow{d}\mid{m}\right.\right. \\ $$$$\:\:\:\:\left\{_{{d}\mid\mathrm{2}{m}+\mathrm{1}} ^{{d}\mid{m}} \Rightarrow\left\{_{{d}\mid\mathrm{2}{m}+\mathrm{1}} ^{{d}\mid\mathrm{2}{m}} \Rightarrow{d}\mid\mathrm{1}\overset{{d}\in\mathbb{N}} {\Rightarrow}\:{d}=\mathrm{1}\:\checkmark\:\:\:\:\right.\right. \\ $$

Answered by MJS_new last updated on 20/Dec/20

m^2 +m=m×(m+1)=a×b  2m+1=m+(m+1)=a+b  c∣(a×b) ⇒ c∣a ∨ c∣b  c∣(a+b) ∧ c∣a ⇔ c∣b  ⇒ (c∣(a×b) ∧ c∣(a+b) ⇔ c∣a ∧ c∣b)  but c∣m ⇔ c∤(m+1) ∀c≠1  ⇒ c=1

$${m}^{\mathrm{2}} +{m}={m}×\left({m}+\mathrm{1}\right)={a}×{b} \\ $$$$\mathrm{2}{m}+\mathrm{1}={m}+\left({m}+\mathrm{1}\right)={a}+{b} \\ $$$${c}\mid\left({a}×{b}\right)\:\Rightarrow\:{c}\mid{a}\:\vee\:{c}\mid{b} \\ $$$${c}\mid\left({a}+{b}\right)\:\wedge\:{c}\mid{a}\:\Leftrightarrow\:{c}\mid{b} \\ $$$$\Rightarrow\:\left({c}\mid\left({a}×{b}\right)\:\wedge\:{c}\mid\left({a}+{b}\right)\:\Leftrightarrow\:{c}\mid{a}\:\wedge\:{c}\mid{b}\right) \\ $$$$\mathrm{but}\:{c}\mid{m}\:\Leftrightarrow\:{c}\nmid\left({m}+\mathrm{1}\right)\:\forall{c}\neq\mathrm{1} \\ $$$$\Rightarrow\:{c}=\mathrm{1} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com