Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 126726 by mnjuly1970 last updated on 23/Dec/20

               ...advanced  calculus...    prove  that :          Σ_(n=1 ) ^∞ (H_n /n^4 ) =^? 3ζ(5)−ζ(2)(3)  ....     where::    H_(n )  =1+(1/2)+(1/3) +...+(1/n)                        ..........

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...{advanced}\:\:{calculus}... \\ $$$$\:\:{prove}\:\:{that}\::\: \\ $$$$\:\:\:\:\:\:\:\underset{{n}=\mathrm{1}\:} {\overset{\infty} {\sum}}\frac{\mathrm{H}_{{n}} }{{n}^{\mathrm{4}} }\:\overset{?} {=}\mathrm{3}\zeta\left(\mathrm{5}\right)−\zeta\left(\mathrm{2}\right)\left(\mathrm{3}\right)\:\:.... \\ $$$$\:\:\:{where}::\:\:\:\:\mathrm{H}_{{n}\:} \:=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}\:+...+\frac{\mathrm{1}}{{n}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:.......... \\ $$

Answered by mindispower last updated on 24/Dec/20

∫_0 ^1 x^(n−1) ln^3 (x)dx=−∫_0 ^∞ e^(−nt) t^3 dt=−(1/n^4 )∫_0 ^∞ t^3 e^(−t) dt  =−(1/n^4 ).Γ(4)=−(6/n^4 )⇒(1/n^4 )=−(1/6)∫_0 ^1 x^(n−1) ln^3 (x)dx  Σ_(n≥1) H_n x^n =−((ln(1−x))/(1−x))  Σ(H_n /n^4 )=ΣH_n .−(1/6)∫_0 ^1 x^(n−1) ln^3 (x)dx  =−(1/6)∫_0 ^1 ln^3 (x)Σ_(n≥1) H_n x^(n−1) dx  S=(1/6)∫_0 ^1 ((ln^3 (x)ln(1−x))/(x(1−x)))dx  β(a,b)=∫_0 ^1 x^(a−1) (1−x)^(b−1) dx  S=(1/6).lim_(a→0^+ ) .lim_(b→0^+ ) .((∂^3 /∂a^3 ).(∂/∂b^ )β(a,b))  =(1+(4/2))ζ(5)−(1/2)Σ_(k=1) ^2 ζ(k+1)ζ(4−k)  =3ζ(5)−(1/2)ζ(2)ζ3)−(1/2)ζ(3)ζ(2)=3ζ(5)−ζ(2)ζ(3)

$$\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{n}−\mathrm{1}} {ln}^{\mathrm{3}} \left({x}\right){dx}=−\int_{\mathrm{0}} ^{\infty} {e}^{−{nt}} {t}^{\mathrm{3}} {dt}=−\frac{\mathrm{1}}{{n}^{\mathrm{4}} }\int_{\mathrm{0}} ^{\infty} {t}^{\mathrm{3}} {e}^{−{t}} {dt} \\ $$$$=−\frac{\mathrm{1}}{{n}^{\mathrm{4}} }.\Gamma\left(\mathrm{4}\right)=−\frac{\mathrm{6}}{{n}^{\mathrm{4}} }\Rightarrow\frac{\mathrm{1}}{{n}^{\mathrm{4}} }=−\frac{\mathrm{1}}{\mathrm{6}}\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{n}−\mathrm{1}} {ln}^{\mathrm{3}} \left({x}\right){dx} \\ $$$$\underset{{n}\geqslant\mathrm{1}} {\sum}{H}_{{n}} {x}^{{n}} =−\frac{{ln}\left(\mathrm{1}−{x}\right)}{\mathrm{1}−{x}} \\ $$$$\Sigma\frac{{H}_{{n}} }{{n}^{\mathrm{4}} }=\Sigma{H}_{{n}} .−\frac{\mathrm{1}}{\mathrm{6}}\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{n}−\mathrm{1}} {ln}^{\mathrm{3}} \left({x}\right){dx} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{6}}\int_{\mathrm{0}} ^{\mathrm{1}} {ln}^{\mathrm{3}} \left({x}\right)\underset{{n}\geqslant\mathrm{1}} {\sum}{H}_{{n}} {x}^{{n}−\mathrm{1}} {dx} \\ $$$${S}=\frac{\mathrm{1}}{\mathrm{6}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}^{\mathrm{3}} \left({x}\right){ln}\left(\mathrm{1}−{x}\right)}{{x}\left(\mathrm{1}−{x}\right)}{dx} \\ $$$$\beta\left({a},{b}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{a}−\mathrm{1}} \left(\mathrm{1}−{x}\right)^{{b}−\mathrm{1}} {dx} \\ $$$${S}=\frac{\mathrm{1}}{\mathrm{6}}.\underset{{a}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}.\underset{{b}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}.\left(\frac{\partial^{\mathrm{3}} }{\partial{a}^{\mathrm{3}} }.\frac{\partial}{\partial{b}^{} }\beta\left({a},{b}\right)\right) \\ $$$$=\left(\mathrm{1}+\frac{\mathrm{4}}{\mathrm{2}}\right)\zeta\left(\mathrm{5}\right)−\frac{\mathrm{1}}{\mathrm{2}}\underset{{k}=\mathrm{1}} {\overset{\mathrm{2}} {\sum}}\zeta\left({k}+\mathrm{1}\right)\zeta\left(\mathrm{4}−{k}\right) \\ $$$$\left.=\mathrm{3}\zeta\left(\mathrm{5}\right)−\frac{\mathrm{1}}{\mathrm{2}}\zeta\left(\mathrm{2}\right)\zeta\mathrm{3}\right)−\frac{\mathrm{1}}{\mathrm{2}}\zeta\left(\mathrm{3}\right)\zeta\left(\mathrm{2}\right)=\mathrm{3}\zeta\left(\mathrm{5}\right)−\zeta\left(\mathrm{2}\right)\zeta\left(\mathrm{3}\right) \\ $$$$ \\ $$

Commented by mnjuly1970 last updated on 24/Dec/20

very nice as always sir minds...

$${very}\:{nice}\:{as}\:{always}\:{sir}\:{minds}... \\ $$

Commented by mindispower last updated on 25/Dec/20

always pleasur

$${always}\:{pleasur} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com