Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 126753 by bemath last updated on 24/Dec/20

  ∫ ((sin x+cos x)/(3sin x+4cos x+1)) dx

sinx+cosx3sinx+4cosx+1dx

Answered by Ar Brandon last updated on 24/Dec/20

sinx+cosx=λ(3sinx+4cosx+1)+μ{(d/dx)(3sinx+4cosx+1)}+γ                        =λ(3sinx+4cosx+1)+μ(3cosx−4sinx)+γ   { ((3λ−4μ=1)),((4λ+3μ=1)),((λ+γ=0)) :}⇒ { ((25μ=−1)),((25λ=7)),((γ=−λ)) :}  I=∫((sinx+cosx)/(3sinx+4cosx+1))dx     =(7/(25))∫((3sinx+4cosx+1)/(3sinx+4cosx+1))dx−(1/(25))∫((3cosx−4sinx)/(3sinx+4cosx+1))dx             −(7/(25))∫(dx/(3sinx+4cosx+1))     =(7/(25))x−(1/(25))ln∣3sinx+4cosx+1∣−(7/(25))J  tan(x/2)=t ⇒ sec^2 (x/2)dx=2tdt ⇒ dx=((2t)/(t^2 +1))dt  J=∫(1/(((3t)/(t^2 +1))−4((t^2 −1)/(t^2 +1))+1))∙((2t)/(t^2 +1))dt=∫((2t)/(3t−4(t^2 −1)+(t^2 +1)))dt      =∫((2t)/(−3t^2 +3t+5))dt=−∫((2t)/(3t^2 −3t−5))dt  2t=μ{(d/dt)(3t^2 −3t−5)}+γ=μ(6t−3)+γ   { ((6μ=2)),((γ−3μ=0)) :} ⇒ { ((μ=(1/3))),((γ=1)) :}  J=−∫{(1/3)∙((6t−3)/(3t^2 −3t−5))+(1/(3t^2 −3t−5))}dt      =−{(1/3)ln∣3t^2 −3t−5∣−((2(√3))/( 3(√(23))))Arctanh((2t−1)(√(3/(23))))}+C      =−((ln∣3t^2 −3t−5∣)/3)+(1/( (√(69))))ln∣((2t−1+3/(√(69)))/(2t−1−3/(√(69))))∣+C  I=(7/(25))x−((ln∣3sinx+4cosx+1∣)/(25))+(7/(75))ln∣3tan^2 ((x/2))−3tan((x/2))−5∣         −(7/( 25(√(69))))ln∣((2tan(x/2)−1+3/(√(69)))/(2tan(x/2)−1−3/(√(69))))∣+C

sinx+cosx=λ(3sinx+4cosx+1)+μ{ddx(3sinx+4cosx+1)}+γ=λ(3sinx+4cosx+1)+μ(3cosx4sinx)+γ{3λ4μ=14λ+3μ=1λ+γ=0{25μ=125λ=7γ=λI=sinx+cosx3sinx+4cosx+1dx=7253sinx+4cosx+13sinx+4cosx+1dx1253cosx4sinx3sinx+4cosx+1dx725dx3sinx+4cosx+1=725x125ln3sinx+4cosx+1725Jtanx2=tsec2x2dx=2tdtdx=2tt2+1dtJ=13tt2+14t21t2+1+12tt2+1dt=2t3t4(t21)+(t2+1)dt=2t3t2+3t+5dt=2t3t23t5dt2t=μ{ddt(3t23t5)}+γ=μ(6t3)+γ{6μ=2γ3μ=0{μ=13γ=1J={136t33t23t5+13t23t5}dt={13ln3t23t523323Arctanh((2t1)323)}+C=ln3t23t53+169ln2t1+3/692t13/69+CI=725xln3sinx+4cosx+125+775ln3tan2(x2)3tan(x2)572569ln2tan(x/2)1+3/692tan(x/2)13/69+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com