All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 126753 by bemath last updated on 24/Dec/20
∫sinx+cosx3sinx+4cosx+1dx
Answered by Ar Brandon last updated on 24/Dec/20
sinx+cosx=λ(3sinx+4cosx+1)+μ{ddx(3sinx+4cosx+1)}+γ=λ(3sinx+4cosx+1)+μ(3cosx−4sinx)+γ{3λ−4μ=14λ+3μ=1λ+γ=0⇒{25μ=−125λ=7γ=−λI=∫sinx+cosx3sinx+4cosx+1dx=725∫3sinx+4cosx+13sinx+4cosx+1dx−125∫3cosx−4sinx3sinx+4cosx+1dx−725∫dx3sinx+4cosx+1=725x−125ln∣3sinx+4cosx+1∣−725Jtanx2=t⇒sec2x2dx=2tdt⇒dx=2tt2+1dtJ=∫13tt2+1−4t2−1t2+1+1⋅2tt2+1dt=∫2t3t−4(t2−1)+(t2+1)dt=∫2t−3t2+3t+5dt=−∫2t3t2−3t−5dt2t=μ{ddt(3t2−3t−5)}+γ=μ(6t−3)+γ{6μ=2γ−3μ=0⇒{μ=13γ=1J=−∫{13⋅6t−33t2−3t−5+13t2−3t−5}dt=−{13ln∣3t2−3t−5∣−23323Arctanh((2t−1)323)}+C=−ln∣3t2−3t−5∣3+169ln∣2t−1+3/692t−1−3/69∣+CI=725x−ln∣3sinx+4cosx+1∣25+775ln∣3tan2(x2)−3tan(x2)−5∣−72569ln∣2tan(x/2)−1+3/692tan(x/2)−1−3/69∣+C
Terms of Service
Privacy Policy
Contact: info@tinkutara.com