Question and Answers Forum

All Questions      Topic List

Vector Questions

Previous in All Question      Next in All Question      

Previous in Vector      Next in Vector      

Question Number 126778 by Ar Brandon last updated on 24/Dec/20

Answered by Dwaipayan Shikari last updated on 24/Dec/20

(√((A_1 ^→ )^2 +(A_2 ^→ )^2 +2∣A_1 ^→ A_2 ^→ ∣cosϕ))=3  4+9+12cosϕ=9⇒ϕ=cos^(−1) (−(1/3))  (A_1 ^→ +2A_2 ^→ )(3A_1 ^→ −4A_2 ^→ )=3∣A_1 ^→ ∣^2 +2∣A_1 ^→ A_2 ^→ ∣cosϕ−8∣A_2 ^→ ∣^2   =12−4−8.9=−64

(A1)2+(A2)2+2A1A2cosφ=34+9+12cosφ=9φ=cos1(13)(A1+2A2)(3A14A2)=3A12+2A1A2cosφ8A22=1248.9=64

Answered by mr W last updated on 24/Dec/20

∣A_1 +A_2 ∣^2 =(a_(1x) +a_(2x) )^2 +(a_(1y) +a_(2y) )^2   =(a_(1x) ^2 +a_(1y) ^2 )+(a_(2x) ^2 +a_(2y) ^2 )+2(a_(1x) a_(2x) +a_(1y) a_(2y) )  =∣A_1 ∣^2 +∣A_2 ∣^2 +2A_1 ∙A_2   3^2 =2^2 +3^2 +2A_1 ∙A_2   ⇒A_1 ∙A_2 =−2    (A_1 +2A_2 )∙(3A_1 −4A_2 )  =3A_1 ∙A_1 +2A_1 ∙A_2 −8A_2 ∙A_2   =3∣A_1 ∣^2 +2A_1 ∙A_2 −8∣A_2 ∣^2   =3×2^2 +2×(−2)−8×3^2   =−64

A1+A22=(a1x+a2x)2+(a1y+a2y)2=(a1x2+a1y2)+(a2x2+a2y2)+2(a1xa2x+a1ya2y)=∣A12+A22+2A1A232=22+32+2A1A2A1A2=2(A1+2A2)(3A14A2)=3A1A1+2A1A28A2A2=3A12+2A1A28A22=3×22+2×(2)8×32=64

Terms of Service

Privacy Policy

Contact: info@tinkutara.com