Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 126827 by harckinwunmy last updated on 24/Dec/20

Answered by deleteduser1 last updated on 24/Dec/20

Q33.  ((4+7i)/(1−3i))  Rationalising  ⇒ (((4+7i)(1+3i))/((1−3i)(1+3i)))=((4+12i+7i+(21i^2 ))/(1^2 −(3i)^2 ))  =((4+19i−21)/(1−(−9)))=((−17+19i)/(10))=((−17)/(10))+i(((19)/(10)))  =−1.7+1.9i (C)

$$\mathrm{Q33}. \\ $$$$\frac{\mathrm{4}+\mathrm{7}{i}}{\mathrm{1}−\mathrm{3}{i}} \\ $$$$\mathrm{Rationalising} \\ $$$$\Rightarrow\:\frac{\left(\mathrm{4}+\mathrm{7}{i}\right)\left(\mathrm{1}+\mathrm{3}{i}\right)}{\left(\mathrm{1}−\mathrm{3}{i}\right)\left(\mathrm{1}+\mathrm{3}{i}\right)}=\frac{\mathrm{4}+\mathrm{12}{i}+\mathrm{7}{i}+\left(\mathrm{21}{i}^{\mathrm{2}} \right)}{\mathrm{1}^{\mathrm{2}} −\left(\mathrm{3}{i}\right)^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{4}+\mathrm{19}{i}−\mathrm{21}}{\mathrm{1}−\left(−\mathrm{9}\right)}=\frac{−\mathrm{17}+\mathrm{19}{i}}{\mathrm{10}}=\frac{−\mathrm{17}}{\mathrm{10}}+{i}\left(\frac{\mathrm{19}}{\mathrm{10}}\right) \\ $$$$=−\mathrm{1}.\mathrm{7}+\mathrm{1}.\mathrm{9}{i}\:\left({C}\right) \\ $$

Answered by deleteduser1 last updated on 24/Dec/20

Q34.  Rationalising ((1+i)/(2+i))  ⇒(((1+i)(2−i))/((2+i)(2−i)))=((2−i+2i−i^2 )/(4−i^2 ))=((2+i−(−1))/(4−(−1)))  =((3+i)/5)=(3/5)+(1/5)i  ⇒x=(3/5)

$$\mathrm{Q34}. \\ $$$$\mathrm{Rationalising}\:\frac{\mathrm{1}+{i}}{\mathrm{2}+{i}} \\ $$$$\Rightarrow\frac{\left(\mathrm{1}+{i}\right)\left(\mathrm{2}−{i}\right)}{\left(\mathrm{2}+{i}\right)\left(\mathrm{2}−{i}\right)}=\frac{\mathrm{2}−{i}+\mathrm{2}{i}−{i}^{\mathrm{2}} }{\mathrm{4}−{i}^{\mathrm{2}} }=\frac{\mathrm{2}+{i}−\left(−\mathrm{1}\right)}{\mathrm{4}−\left(−\mathrm{1}\right)} \\ $$$$=\frac{\mathrm{3}+{i}}{\mathrm{5}}=\frac{\mathrm{3}}{\mathrm{5}}+\frac{\mathrm{1}}{\mathrm{5}}{i} \\ $$$$\Rightarrow\mathrm{x}=\frac{\mathrm{3}}{\mathrm{5}} \\ $$

Answered by deleteduser1 last updated on 24/Dec/20

Q35.  Rationalising z  ⇒ ((1(1−2i))/((1+2i)(1−2i)))=((1−2i)/(1−(2i)^2 ))=((1−2i)/(1−(−4)))  =((1−2i)/5)=(1/5)−(2/5)i  z^− =(1/5)+(2/5)i

$$\mathrm{Q35}. \\ $$$$\mathrm{Rationalising}\:\mathrm{z} \\ $$$$\Rightarrow\:\frac{\mathrm{1}\left(\mathrm{1}−\mathrm{2}{i}\right)}{\left(\mathrm{1}+\mathrm{2}{i}\right)\left(\mathrm{1}−\mathrm{2}{i}\right)}=\frac{\mathrm{1}−\mathrm{2}{i}}{\mathrm{1}−\left(\mathrm{2}{i}\right)^{\mathrm{2}} }=\frac{\mathrm{1}−\mathrm{2}{i}}{\mathrm{1}−\left(−\mathrm{4}\right)} \\ $$$$=\frac{\mathrm{1}−\mathrm{2}{i}}{\mathrm{5}}=\frac{\mathrm{1}}{\mathrm{5}}−\frac{\mathrm{2}}{\mathrm{5}}{i} \\ $$$$\overset{−} {{z}}=\frac{\mathrm{1}}{\mathrm{5}}+\frac{\mathrm{2}}{\mathrm{5}}{i} \\ $$

Answered by deleteduser1 last updated on 24/Dec/20

Q36.  Note that z^�_−   = z  ⇒ conjugate of (conjugate of z) = z  Hence, answer is B.

$$\mathrm{Q36}. \\ $$$$\mathrm{Note}\:\mathrm{that}\:\bar {\mathrm{z}}\:=\:\mathrm{z} \\ $$$$\Rightarrow\:\mathrm{conjugate}\:\mathrm{of}\:\left(\mathrm{conjugate}\:\mathrm{of}\:\mathrm{z}\right)\:=\:\mathrm{z} \\ $$$$\mathrm{Hence},\:\mathrm{answer}\:\mathrm{is}\:\mathrm{B}. \\ $$

Commented by harckinwunmy last updated on 24/Dec/20

thanks AST. can you help complete it

$${thanks}\:{AST}.\:{can}\:{you}\:{help}\:{complete}\:{it} \\ $$

Answered by deleteduser1 last updated on 24/Dec/20

  Q37.  Rationalising z  ⇒ ((1(1+i))/((1−i)(1+i)))=((1+i)/(1−i^2 ))=((1+i)/(1−(−1)))  =((1+i)/2)=(1/2)+(i/2)  ⇒ real part of z = (1/2)

$$ \\ $$$$\mathrm{Q37}. \\ $$$$\mathrm{Rationalising}\:{z} \\ $$$$\Rightarrow\:\frac{\mathrm{1}\left(\mathrm{1}+{i}\right)}{\left(\mathrm{1}−{i}\right)\left(\mathrm{1}+{i}\right)}=\frac{\mathrm{1}+{i}}{\mathrm{1}−{i}^{\mathrm{2}} }=\frac{\mathrm{1}+{i}}{\mathrm{1}−\left(−\mathrm{1}\right)} \\ $$$$=\frac{\mathrm{1}+{i}}{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{2}}+\frac{{i}}{\mathrm{2}} \\ $$$$\Rightarrow\:\mathrm{real}\:\mathrm{part}\:\mathrm{of}\:\mathrm{z}\:=\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Answered by deleteduser1 last updated on 24/Dec/20

Q38.  4+a−i=2b+ai  Comparing real and imaginary part  ⇒ a=−1 and 4+a=2b  ⇒ 4−1=2b ⇒ b = (3/2)  Hence, (a,b) = (−1, (3/2))

$$\mathrm{Q38}. \\ $$$$\mathrm{4}+\mathrm{a}−{i}=\mathrm{2}{b}+{ai} \\ $$$${C}\mathrm{omparing}\:\mathrm{real}\:\mathrm{and}\:\mathrm{imaginary}\:\mathrm{part} \\ $$$$\Rightarrow\:\mathrm{a}=−\mathrm{1}\:\mathrm{and}\:\mathrm{4}+\mathrm{a}=\mathrm{2b} \\ $$$$\Rightarrow\:\mathrm{4}−\mathrm{1}=\mathrm{2b}\:\Rightarrow\:\mathrm{b}\:=\:\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\mathrm{Hence},\:\left(\mathrm{a},\mathrm{b}\right)\:=\:\left(−\mathrm{1},\:\frac{\mathrm{3}}{\mathrm{2}}\right)\: \\ $$$$ \\ $$

Answered by deleteduser1 last updated on 24/Dec/20

Q39.  a+ib=(2−i)^2 =4+i^2 −4i=4+(−1)−4i  =3−4i  Comparing real and imaginary parts  a=3, b=−4  ⇒ a+b = 3+(−4)=−1

$$\mathrm{Q39}. \\ $$$$\mathrm{a}+{i}\mathrm{b}=\left(\mathrm{2}−{i}\right)^{\mathrm{2}} =\mathrm{4}+{i}^{\mathrm{2}} −\mathrm{4}{i}=\mathrm{4}+\left(−\mathrm{1}\right)−\mathrm{4}{i} \\ $$$$=\mathrm{3}−\mathrm{4}{i} \\ $$$$\mathrm{Comparing}\:\mathrm{real}\:\mathrm{and}\:\mathrm{imaginary}\:\mathrm{parts} \\ $$$$\mathrm{a}=\mathrm{3},\:\mathrm{b}=−\mathrm{4} \\ $$$$\Rightarrow\:\mathrm{a}+\mathrm{b}\:=\:\mathrm{3}+\left(−\mathrm{4}\right)=−\mathrm{1} \\ $$

Answered by deleteduser1 last updated on 24/Dec/20

Q40.   Rationalising z  ⇒ ((1(i))/(i(i)))=(i/i^2 )=(i/(−1))=−i  Hence,z^− =i

$$\mathrm{Q40}.\: \\ $$$$\mathrm{Rationalising}\:\mathrm{z} \\ $$$$\Rightarrow\:\frac{\mathrm{1}\left({i}\right)}{{i}\left({i}\right)}=\frac{{i}}{{i}^{\mathrm{2}} }=\frac{{i}}{−\mathrm{1}}=−{i} \\ $$$$\mathrm{Hence},\overset{−} {\mathrm{z}}={i} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com