Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 126865 by Lordose last updated on 24/Dec/20

∫_0 ^( π) (x/(2+cos(2x)))dx = 0  Prove or Disprove

$$\int_{\mathrm{0}} ^{\:\pi} \frac{\mathrm{x}}{\mathrm{2}+\mathrm{cos}\left(\mathrm{2x}\right)}\mathrm{dx}\:=\:\mathrm{0} \\ $$$$\mathrm{Prove}\:\mathrm{or}\:\mathrm{Disprove} \\ $$

Commented by Ar Brandon last updated on 25/Dec/20

Commented by bramlexs22 last updated on 25/Dec/20

Commented by liberty last updated on 25/Dec/20

Commented by MJS_new last updated on 25/Dec/20

first, plot f(x)=(x/(2+cos 2x)) for 0≤x≤π to see  the integral obviously is >0

$$\mathrm{first},\:\mathrm{plot}\:{f}\left({x}\right)=\frac{{x}}{\mathrm{2}+\mathrm{cos}\:\mathrm{2}{x}}\:\mathrm{for}\:\mathrm{0}\leqslant{x}\leqslant\pi\:\mathrm{to}\:\mathrm{see} \\ $$$$\mathrm{the}\:\mathrm{integral}\:\mathrm{obviously}\:\mathrm{is}\:>\mathrm{0} \\ $$

Answered by Ar Brandon last updated on 25/Dec/20

I=∫_0 ^π (x/(2+cos(2x)))dx  I=∫_0 ^π ((π−x)/(2+cos(2π−2x)))dx=∫_0 ^π ((π−x)/(2+cos(2x)))dx  2I=∫_0 ^π (π/(2+cos(2x)))dx=∫_0 ^π (π/(1+2cos^2 x))dx        =∫_0 ^π ((πsec^2 x)/(sec^2 x+2))dx=∫_0 ^π ((πd(tanx))/(3+tan^2 x))        =π[(1/( (√3)))Arctan(((tanx)/( (√3))))]_0 ^π =(π^2 /( (√3)))  I=(π^2 /( 2(√3)))≈2.849109379

$$\mathcal{I}=\int_{\mathrm{0}} ^{\pi} \frac{\mathrm{x}}{\mathrm{2}+\mathrm{cos}\left(\mathrm{2x}\right)}\mathrm{dx} \\ $$$$\mathcal{I}=\int_{\mathrm{0}} ^{\pi} \frac{\pi−\mathrm{x}}{\mathrm{2}+\mathrm{cos}\left(\mathrm{2}\pi−\mathrm{2x}\right)}\mathrm{dx}=\int_{\mathrm{0}} ^{\pi} \frac{\pi−\mathrm{x}}{\mathrm{2}+\mathrm{cos}\left(\mathrm{2x}\right)}\mathrm{dx} \\ $$$$\mathrm{2}\mathcal{I}=\int_{\mathrm{0}} ^{\pi} \frac{\pi}{\mathrm{2}+\mathrm{cos}\left(\mathrm{2x}\right)}\mathrm{dx}=\int_{\mathrm{0}} ^{\pi} \frac{\pi}{\mathrm{1}+\mathrm{2cos}^{\mathrm{2}} \mathrm{x}}\mathrm{dx} \\ $$$$\:\:\:\:\:\:=\int_{\mathrm{0}} ^{\pi} \frac{\pi\mathrm{sec}^{\mathrm{2}} \mathrm{x}}{\mathrm{sec}^{\mathrm{2}} \mathrm{x}+\mathrm{2}}\mathrm{dx}=\int_{\mathrm{0}} ^{\pi} \frac{\pi\mathrm{d}\left(\mathrm{tanx}\right)}{\mathrm{3}+\mathrm{tan}^{\mathrm{2}} \mathrm{x}} \\ $$$$\:\:\:\:\:\:=\pi\left[\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\mathrm{Arctan}\left(\frac{\mathrm{tanx}}{\:\sqrt{\mathrm{3}}}\right)\right]_{\mathrm{0}} ^{\pi} =\frac{\pi^{\mathrm{2}} }{\:\sqrt{\mathrm{3}}} \\ $$$$\mathcal{I}=\frac{\pi^{\mathrm{2}} }{\:\mathrm{2}\sqrt{\mathrm{3}}}\approx\mathrm{2}.\mathrm{849109379} \\ $$

Commented by Lordose last updated on 25/Dec/20

tan(π) = 0 bro

$$\mathrm{tan}\left(\pi\right)\:=\:\mathrm{0}\:\mathrm{bro} \\ $$

Commented by Ar Brandon last updated on 25/Dec/20

I realized sometime ago that when dealing with  Arctan(((tan(x))/a)) we′ve got to make use of the sign on zero.  That is tan0=((sin0)/(cos0))=(0/(+1))=+0 ⇒Arctan(((tan0)/a))=Arctan(+0)=0  And same goes for tanπ  tanπ=((sinπ)/(cosπ))=(0/(−1))=−0 then Arctan(((tanπ)/a))=Arctan(−0)=π  That′s why my answer corresponds with that obtained using   the scientific calculator. Perhabs someone may have a  better explanation for this result.

$$\mathrm{I}\:\mathrm{realized}\:\mathrm{sometime}\:\mathrm{ago}\:\mathrm{that}\:\mathrm{when}\:\mathrm{dealing}\:\mathrm{with} \\ $$$$\mathrm{Arctan}\left(\frac{\mathrm{tan}\left(\mathrm{x}\right)}{\mathrm{a}}\right)\:\mathrm{we}'\mathrm{ve}\:\mathrm{got}\:\mathrm{to}\:\mathrm{make}\:\mathrm{use}\:\mathrm{of}\:\mathrm{the}\:\mathrm{sign}\:\mathrm{on}\:\mathrm{zero}. \\ $$$$\mathrm{That}\:\mathrm{is}\:\mathrm{tan0}=\frac{\mathrm{sin0}}{\mathrm{cos0}}=\frac{\mathrm{0}}{+\mathrm{1}}=+\mathrm{0}\:\Rightarrow\mathrm{Arctan}\left(\frac{\mathrm{tan0}}{\mathrm{a}}\right)=\mathrm{Arctan}\left(+\mathrm{0}\right)=\mathrm{0} \\ $$$$\mathrm{And}\:\mathrm{same}\:\mathrm{goes}\:\mathrm{for}\:\mathrm{tan}\pi \\ $$$$\mathrm{tan}\pi=\frac{\mathrm{sin}\pi}{\mathrm{cos}\pi}=\frac{\mathrm{0}}{−\mathrm{1}}=−\mathrm{0}\:\mathrm{then}\:\mathrm{Arctan}\left(\frac{\mathrm{tan}\pi}{\mathrm{a}}\right)=\mathrm{Arctan}\left(−\mathrm{0}\right)=\pi \\ $$$$\mathrm{That}'\mathrm{s}\:\mathrm{why}\:\mathrm{my}\:\mathrm{answer}\:\mathrm{corresponds}\:\mathrm{with}\:\mathrm{that}\:\mathrm{obtained}\:\mathrm{using}\: \\ $$$$\mathrm{the}\:\mathrm{scientific}\:\mathrm{calculator}.\:\mathrm{Perhabs}\:\mathrm{someone}\:\mathrm{may}\:\mathrm{have}\:\mathrm{a} \\ $$$$\mathrm{better}\:\mathrm{explanation}\:\mathrm{for}\:\mathrm{this}\:\mathrm{result}. \\ $$

Commented by MJS_new last updated on 25/Dec/20

the function f(x)=(π/(2+cos 2x)) obviously is  symmetric to x=(π/2) ⇒   I=π∫_0 ^(π/2) (dx/(2+cos 2x))=       [t=tan x → dx=cos^2  x dt]  =π∫_0 ^∞ (dt/(t^2 +3))=((π(√3))/3)[arctan (t/( (√3)))]_0 ^∞ =((π^2 (√3))/6)≈2.84911

$$\mathrm{the}\:\mathrm{function}\:{f}\left({x}\right)=\frac{\pi}{\mathrm{2}+\mathrm{cos}\:\mathrm{2}{x}}\:\mathrm{obviously}\:\mathrm{is} \\ $$$$\mathrm{symmetric}\:\mathrm{to}\:{x}=\frac{\pi}{\mathrm{2}}\:\Rightarrow\: \\ $$$${I}=\pi\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\frac{{dx}}{\mathrm{2}+\mathrm{cos}\:\mathrm{2}{x}}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{tan}\:{x}\:\rightarrow\:{dx}=\mathrm{cos}^{\mathrm{2}} \:{x}\:{dt}\right] \\ $$$$=\pi\underset{\mathrm{0}} {\overset{\infty} {\int}}\frac{{dt}}{{t}^{\mathrm{2}} +\mathrm{3}}=\frac{\pi\sqrt{\mathrm{3}}}{\mathrm{3}}\left[\mathrm{arctan}\:\frac{{t}}{\:\sqrt{\mathrm{3}}}\right]_{\mathrm{0}} ^{\infty} =\frac{\pi^{\mathrm{2}} \sqrt{\mathrm{3}}}{\mathrm{6}}\approx\mathrm{2}.\mathrm{84911} \\ $$

Commented by MJS_new last updated on 25/Dec/20

...if the borders change from [a, b] to [c, c]  you always have to look for symmetry. that  is the point

$$...\mathrm{if}\:\mathrm{the}\:\mathrm{borders}\:\mathrm{change}\:\mathrm{from}\:\left[{a},\:{b}\right]\:\mathrm{to}\:\left[{c},\:{c}\right] \\ $$$$\mathrm{you}\:\mathrm{always}\:\mathrm{have}\:\mathrm{to}\:\mathrm{look}\:\mathrm{for}\:\mathrm{symmetry}.\:\mathrm{that} \\ $$$$\mathrm{is}\:\mathrm{the}\:\mathrm{point} \\ $$

Commented by Ar Brandon last updated on 26/Dec/20

Sounds better as an explanation.

Commented by Ar Brandon last updated on 26/Dec/20

Back from feast ? Haha !

Answered by Olaf last updated on 25/Dec/20

Ω = ∫_0 ^π (x/(2+cos(2x)))dx (1)  Let u = π−x  2Ω = ∫_π ^0 ((π−u)/(2+cos(2u)))(−du) = ∫_0 ^π ((π−u)/(2+cos(2u)))du (2)  (1)+(2) :  2Ω = ∫_0 ^π (π/(2+cos(2x)))dx  2Ω = ∫_0 ^π (π/(2+((1−tan^2 x)/(1+tan^2 x))))dx  2Ω = ∫_0 ^π (π/(3−tan^2 x))(1+tan^2 x)dx  2Ω = ∫_0 ^(π/2) + ∫_(π/2) ^π  = Ω_1 +Ω_2   Let v = tanx  Ω_1  = π∫_0 ^∞ (dv/(3−v^2 ))  Ω_1  = (π/(2(√3)))∫_0 ^∞ [(1/( (√3)+v))+(1/( (√3)−v))]dv  Ω_1  = (π/(2(√3)))∫_0 ^∞ [ln∣(((√3)+v)/( (√3)−v))∣]_0 ^∞ = 0  ...and Ω_2  = 0  ⇒ Ω = 0

$$\Omega\:=\:\int_{\mathrm{0}} ^{\pi} \frac{{x}}{\mathrm{2}+\mathrm{cos}\left(\mathrm{2}{x}\right)}{dx}\:\left(\mathrm{1}\right) \\ $$$$\mathrm{Let}\:{u}\:=\:\pi−{x} \\ $$$$\mathrm{2}\Omega\:=\:\int_{\pi} ^{\mathrm{0}} \frac{\pi−{u}}{\mathrm{2}+\mathrm{cos}\left(\mathrm{2}{u}\right)}\left(−{du}\right)\:=\:\int_{\mathrm{0}} ^{\pi} \frac{\pi−{u}}{\mathrm{2}+\mathrm{cos}\left(\mathrm{2}{u}\right)}{du}\:\left(\mathrm{2}\right) \\ $$$$\left(\mathrm{1}\right)+\left(\mathrm{2}\right)\:: \\ $$$$\mathrm{2}\Omega\:=\:\int_{\mathrm{0}} ^{\pi} \frac{\pi}{\mathrm{2}+\mathrm{cos}\left(\mathrm{2}{x}\right)}{dx} \\ $$$$\mathrm{2}\Omega\:=\:\int_{\mathrm{0}} ^{\pi} \frac{\pi}{\mathrm{2}+\frac{\mathrm{1}−\mathrm{tan}^{\mathrm{2}} {x}}{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} {x}}}{dx} \\ $$$$\mathrm{2}\Omega\:=\:\int_{\mathrm{0}} ^{\pi} \frac{\pi}{\mathrm{3}−\mathrm{tan}^{\mathrm{2}} {x}}\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} {x}\right){dx} \\ $$$$\mathrm{2}\Omega\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} +\:\int_{\frac{\pi}{\mathrm{2}}} ^{\pi} \:=\:\Omega_{\mathrm{1}} +\Omega_{\mathrm{2}} \\ $$$$\mathrm{Let}\:{v}\:=\:\mathrm{tan}{x} \\ $$$$\Omega_{\mathrm{1}} \:=\:\pi\int_{\mathrm{0}} ^{\infty} \frac{{dv}}{\mathrm{3}−{v}^{\mathrm{2}} } \\ $$$$\Omega_{\mathrm{1}} \:=\:\frac{\pi}{\mathrm{2}\sqrt{\mathrm{3}}}\int_{\mathrm{0}} ^{\infty} \left[\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}+{v}}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}−{v}}\right]{dv} \\ $$$$\Omega_{\mathrm{1}} \:=\:\frac{\pi}{\mathrm{2}\sqrt{\mathrm{3}}}\int_{\mathrm{0}} ^{\infty} \left[\mathrm{ln}\mid\frac{\sqrt{\mathrm{3}}+{v}}{\:\sqrt{\mathrm{3}}−{v}}\mid\right]_{\mathrm{0}} ^{\infty} =\:\mathrm{0} \\ $$$$...\mathrm{and}\:\Omega_{\mathrm{2}} \:=\:\mathrm{0} \\ $$$$\Rightarrow\:\Omega\:=\:\mathrm{0} \\ $$

Commented by MJS_new last updated on 25/Dec/20

sorry but you′re wrong

$$\mathrm{sorry}\:\mathrm{but}\:\mathrm{you}'\mathrm{re}\:\mathrm{wrong} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com