Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 126934 by Dwaipayan Shikari last updated on 25/Dec/20

(1/(1!))+((1!^2 )/(3!))+((2!^2 )/(5!))+((3!^2 )/(7!))+((4!^2 )/(9!))+....

$$\frac{\mathrm{1}}{\mathrm{1}!}+\frac{\mathrm{1}!^{\mathrm{2}} }{\mathrm{3}!}+\frac{\mathrm{2}!^{\mathrm{2}} }{\mathrm{5}!}+\frac{\mathrm{3}!^{\mathrm{2}} }{\mathrm{7}!}+\frac{\mathrm{4}!^{\mathrm{2}} }{\mathrm{9}!}+.... \\ $$

Commented by Dwaipayan Shikari last updated on 25/Dec/20

I have found ((2π)/(3(√3)))

$${I}\:{have}\:{found}\:\frac{\mathrm{2}\pi}{\mathrm{3}\sqrt{\mathrm{3}}} \\ $$

Commented by Olaf last updated on 25/Dec/20

I try to find the solution  with Wallis I_n  = ∫_0 ^(π/2) sin^(2n+1) xdx  ...to be continued...

$$\mathrm{I}\:\mathrm{try}\:\mathrm{to}\:\mathrm{find}\:\mathrm{the}\:\mathrm{solution} \\ $$$$\mathrm{with}\:\mathrm{Wallis}\:\mathrm{I}_{{n}} \:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{sin}^{\mathrm{2}{n}+\mathrm{1}} {xdx} \\ $$$$...\mathrm{to}\:\mathrm{be}\:\mathrm{continued}... \\ $$

Commented by Dwaipayan Shikari last updated on 25/Dec/20

I have tried  Σ_(n=0) ^∞ ((n!^2 )/((2n+1)!))=Σ_(n=0) ^∞ ((Γ^2 (n+1))/(Γ(2n+2)))=Σ_(n=0) ^∞ B(n+1,n+1)  =Σ_(n=0) ^∞ ∫_0 ^1 x^n (1−x)^n =∫_0 ^1 Σ_(n=0) ^∞ x^n (1−x)^n =∫_0 ^1 (1/(1−x(1−x)))dx  =∫_0 ^1 (1/(x^2 −x+1))dx=[(2/( (√3)))tan^(−1) ((2x−1)/( (√3)))]_0 ^1 =((2π)/( 3(√3)))

$${I}\:{have}\:{tried} \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{n}!^{\mathrm{2}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)!}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\Gamma^{\mathrm{2}} \left({n}+\mathrm{1}\right)}{\Gamma\left(\mathrm{2}{n}+\mathrm{2}\right)}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{B}\left({n}+\mathrm{1},{n}+\mathrm{1}\right) \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{n}} \left(\mathrm{1}−{x}\right)^{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{x}^{{n}} \left(\mathrm{1}−{x}\right)^{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\mathrm{1}−{x}\left(\mathrm{1}−{x}\right)}{dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{{x}^{\mathrm{2}} −{x}+\mathrm{1}}{dx}=\left[\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}{tan}^{−\mathrm{1}} \frac{\mathrm{2}{x}−\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right]_{\mathrm{0}} ^{\mathrm{1}} =\frac{\mathrm{2}\pi}{\:\mathrm{3}\sqrt{\mathrm{3}}} \\ $$

Answered by mindispower last updated on 25/Dec/20

=Σ_(n≥0) ((n!.n!)/((2n+1)!))=Σ_(n≥0) ((Γ(n+1)Γ(n+1))/(Γ(2n+2)_ ))  =Σ_(n≥0) β(n+1,n+1)=Σ_(n≥0) ∫_0 ^1 t^(n−1) (1−t)^(n−1) dt  =∫_0 ^1 Σ_(n≥0) (t(1−t))^(n−1) dt  =∫_0 ^1 (1/(1−t+t^2 ))dt  =∫_0 ^1 (1/((t−(1/2))^2 +(3/4)))dt  =∫_0 ^1 (dt/((3/4)((((2t−1)/( (√3))))^2 +1)))=[_0 ^1 (2/( (√3)))tan^− (((2t−1)/( (√3))))]  =(4/( (√3)))tan^− ((1/( (√3))))=4(π/(6(√3)))=((2π)/(3(√3)))

$$=\underset{{n}\geqslant\mathrm{0}} {\sum}\frac{{n}!.{n}!}{\left(\mathrm{2}{n}+\mathrm{1}\right)!}=\underset{{n}\geqslant\mathrm{0}} {\sum}\frac{\Gamma\left({n}+\mathrm{1}\right)\Gamma\left({n}+\mathrm{1}\right)}{\Gamma\left(\mathrm{2}{n}+\mathrm{2}\right)_{} } \\ $$$$=\underset{{n}\geqslant\mathrm{0}} {\sum}\beta\left({n}+\mathrm{1},{n}+\mathrm{1}\right)=\underset{{n}\geqslant\mathrm{0}} {\sum}\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{{n}−\mathrm{1}} \left(\mathrm{1}−{t}\right)^{{n}−\mathrm{1}} {dt} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \underset{{n}\geqslant\mathrm{0}} {\sum}\left({t}\left(\mathrm{1}−{t}\right)\right)^{{n}−\mathrm{1}} {dt} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\mathrm{1}−{t}+{t}^{\mathrm{2}} }{dt} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\left({t}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{\mathrm{3}}{\mathrm{4}}}{dt} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dt}}{\frac{\mathrm{3}}{\mathrm{4}}\left(\left(\frac{\mathrm{2}{t}−\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right)^{\mathrm{2}} +\mathrm{1}\right)}=\left[_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}{tan}^{−} \left(\frac{\mathrm{2}{t}−\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right)\right] \\ $$$$=\frac{\mathrm{4}}{\:\sqrt{\mathrm{3}}}{tan}^{−} \left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right)=\mathrm{4}\frac{\pi}{\mathrm{6}\sqrt{\mathrm{3}}}=\frac{\mathrm{2}\pi}{\mathrm{3}\sqrt{\mathrm{3}}} \\ $$

Commented by Dwaipayan Shikari last updated on 25/Dec/20

Thanking you

$${Thanking}\:{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com