Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 126950 by deleteduser1 last updated on 05/Dec/22

Answered by floor(10²Eta[1]) last updated on 25/Dec/20

A.1+2^2^n  +2^2^(n+1)  ≡1+(−1)^2^n  +(−1)^2^(n+1)  ≡1+1+1≡0(mod 3)  A is true for all n∈N(Z_+ ^∗ )    B.1+2^2^n  +2^2^(n+1)  (mod7)  2^n =6q_1 +r_1   2^(n+1) =6.2q_1 +2r_1 ⇒0≤2r_1 <5⇒0≤r_1 ≤2  (I)2^n =6q_1 , (II)2^n =6q_1 +1, (III)2^n =6q_1 +2  (I):1+(2^q_1  )^6 +(2^(2q_1 ) )^6 ≡3≡0(mod7)  (II):1+(2^q_1  )^6 .2^1 +(2^(2q_1 ) )^6 .2^2 ≡1+2+4≡0(mod7)  (III):1+(2^q_1  )^6 .2^2 +(2^(2q_1 ) )^6 .2^4 ≡1+4+16≡0(mod7)  B is true for all n∈N    C.1+2^2^n  +2^2^(n+1)  ∣1+2^2^(n+1)  +2^2^(n+2)    (....)    D.s_n ^2 >s_(n+1) ⇒  (1+2^2^n  +2^2^(n+1)  )^2 >1+2^2^(n+1)  +2^2^(n+2)    1+2^2^(n+1)  +2^2^(n+2)  +2^(2^n +1) +2^(2^(n+1) +1) +2^(2^n .3+1) >1+2^2^(n+1)  +2^2^(n+2)    D is true for all n∈N    E.12s_1 s_2 ...s_n <s_(n+1)   (....)

A.1+22n+22n+11+(1)2n+(1)2n+11+1+10(mod3)AistrueforallnN(Z+)B.1+22n+22n+1(mod7)2n=6q1+r12n+1=6.2q1+2r102r1<50r12(I)2n=6q1,(II)2n=6q1+1,(III)2n=6q1+2(I):1+(2q1)6+(22q1)630(mod7)(II):1+(2q1)6.21+(22q1)6.221+2+40(mod7)(III):1+(2q1)6.22+(22q1)6.241+4+160(mod7)BistrueforallnNC.1+22n+22n+11+22n+1+22n+2(....)D.sn2>sn+1(1+22n+22n+1)2>1+22n+1+22n+21+22n+1+22n+2+22n+1+22n+1+1+22n.3+1>1+22n+1+22n+2DistrueforallnNE.12s1s2...sn<sn+1(....)

Commented by deleteduser1 last updated on 26/Sep/22

C ⇒ 1+2^2^n  +2^2^(n+1)  ∣1+2^2^(n+1)  +2^2^(n+2)    Let 2^2^n  =p  ∴C⇒ 1+p+p^2 ∣1+p^2 +p^4   1+p^2 +p^4 =(p^2 +1)^2 −p^2 =(p^2 +1−p)(p^2 +1+p)  ⇒ C is true

C1+22n+22n+11+22n+1+22n+2Let22n=pC1+p+p21+p2+p41+p2+p4=(p2+1)2p2=(p2+1p)(p2+1+p)Cistrue

Terms of Service

Privacy Policy

Contact: info@tinkutara.com