Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 126994 by bramlexs22 last updated on 26/Dec/20

 ∫ (x^4 /(1+x^8 )) dx =?

x41+x8dx=?

Answered by liberty last updated on 26/Dec/20

Ω=∫(x^4 /(1+x^8 )) dx = ∫(dx/(x^4 +(1/x^4 ))) =∫(dx/((x^2 +(1/x^2 ))^2 −2))  Ω=∫(dx/((x^2 +(1/x^2 )+(√2))(x^2 +(1/x^2 )−(√2))))   Ω=((√2)/4)∫((dx/((x^2 +(1/x^2 )−(√2))))−(dx/((x^2 +(1/x^2 )+(√2)))))  Ω=((√2)/8) [∫(((1−(1/x^2 ))+(1+(1/x^2 )))/(x^2 +(1/x^2 )−(√2)))dx −∫ (((1−(1/x^2 ))+(1+(1/x^2 )))/(x^2 +(1/x^2 )+(√2)))dx ]  Ω=((√2)/8) [∫((d(x+(1/x)))/((x+(1/x))^2 −(2+(√2))))+∫((d(x−(1/x)))/((x−(1/x))^2 +(2−(√2))))]    −((√2)/8) [∫((d(x+(1/x)))/((x+(1/x))^2 −(2−(√2))))+∫((d(x−(1/x)))/((x−(1/x))^2 +(2+(√2))))]  Ω=((√2)/8) [ (1/(2(√(2+(√2))))) ln ∣((x^2 −x(√(2+(√2))) +1)/(x^2 +x(√(2+(√2))) +1)) ∣ +        (1/( (√(2−(√2))))) tan^(−1) (((x^2 −1)/(x(√(2−(√2))))))−(1/(2(√(2−(√2)))))ln ∣((x^2 −x(√(2−(√2)))+1)/(x^2 +x(√(2−(√2)))+1))∣        −(1/( (√(2−(√2))))) tan^(−1) (((x^2 +1)/(x(√(2+(√2)))))) ] + c

Ω=x41+x8dx=dxx4+1x4=dx(x2+1x2)22Ω=dx(x2+1x2+2)(x2+1x22)Ω=24(dx(x2+1x22)dx(x2+1x2+2))Ω=28[(11x2)+(1+1x2)x2+1x22dx(11x2)+(1+1x2)x2+1x2+2dx]Ω=28[d(x+1x)(x+1x)2(2+2)+d(x1x)(x1x)2+(22)]28[d(x+1x)(x+1x)2(22)+d(x1x)(x1x)2+(2+2)]Ω=28[122+2lnx2x2+2+1x2+x2+2+1+122tan1(x21x22)1222lnx2x22+1x2+x22+1122tan1(x2+1x2+2)]+c

Commented by bramlexs22 last updated on 26/Dec/20

waw....

waw....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com