Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 127020 by bramlexs22 last updated on 26/Dec/20

  super nice !             show that              ζ(6) = (π^6 /(945))

$$\:\:{super}\:{nice}\:! \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{show}\:{that}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\zeta\left(\mathrm{6}\right)\:=\:\frac{\pi^{\mathrm{6}} }{\mathrm{945}} \\ $$

Commented by liberty last updated on 26/Dec/20

hahaha very nice

$${hahaha}\:{very}\:{nice}\: \\ $$

Answered by Olaf last updated on 26/Dec/20

ζ(2k) = (((−1)^(k−1) B_(2k) (2π)^(2k) )/(2(2k)!))  For k = 3 :  ζ(6) = (((−1)^2 B_6 (2π)^6 )/(2×6!)) = (2/(45))B_6 π^6   B_6  = (1/(42))  ζ(6) = (2/(45))×(1/(42))π^6  = (π^6 /(945))

$$\zeta\left(\mathrm{2}{k}\right)\:=\:\frac{\left(−\mathrm{1}\right)^{{k}−\mathrm{1}} {B}_{\mathrm{2}{k}} \left(\mathrm{2}\pi\right)^{\mathrm{2}{k}} }{\mathrm{2}\left(\mathrm{2}{k}\right)!} \\ $$$$\mathrm{For}\:{k}\:=\:\mathrm{3}\:: \\ $$$$\zeta\left(\mathrm{6}\right)\:=\:\frac{\left(−\mathrm{1}\right)^{\mathrm{2}} {B}_{\mathrm{6}} \left(\mathrm{2}\pi\right)^{\mathrm{6}} }{\mathrm{2}×\mathrm{6}!}\:=\:\frac{\mathrm{2}}{\mathrm{45}}{B}_{\mathrm{6}} \pi^{\mathrm{6}} \\ $$$${B}_{\mathrm{6}} \:=\:\frac{\mathrm{1}}{\mathrm{42}} \\ $$$$\zeta\left(\mathrm{6}\right)\:=\:\frac{\mathrm{2}}{\mathrm{45}}×\frac{\mathrm{1}}{\mathrm{42}}\pi^{\mathrm{6}} \:=\:\frac{\pi^{\mathrm{6}} }{\mathrm{945}} \\ $$

Answered by Dwaipayan Shikari last updated on 26/Dec/20

ζ(2n)=(((−1)^(n+1) (2π)^(2n) )/(2(2n)!))B_(2n)   ζ(6)=(((2π)^6 )/(2.6!)).(1/(42))=(π^6 /(15.63))=(π^6 /(945))  ζ(8)=(π^8 /(9450))  ζ(10)=(π^(10) /(93555))  ....

$$\zeta\left(\mathrm{2}{n}\right)=\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} \left(\mathrm{2}\pi\right)^{\mathrm{2}{n}} }{\mathrm{2}\left(\mathrm{2}{n}\right)!}{B}_{\mathrm{2}{n}} \\ $$$$\zeta\left(\mathrm{6}\right)=\frac{\left(\mathrm{2}\pi\right)^{\mathrm{6}} }{\mathrm{2}.\mathrm{6}!}.\frac{\mathrm{1}}{\mathrm{42}}=\frac{\pi^{\mathrm{6}} }{\mathrm{15}.\mathrm{63}}=\frac{\pi^{\mathrm{6}} }{\mathrm{945}} \\ $$$$\zeta\left(\mathrm{8}\right)=\frac{\pi^{\mathrm{8}} }{\mathrm{9450}} \\ $$$$\zeta\left(\mathrm{10}\right)=\frac{\pi^{\mathrm{10}} }{\mathrm{93555}} \\ $$$$.... \\ $$

Commented by Dwaipayan Shikari last updated on 26/Dec/20

((sinπx)/(πx))=Π^∞ (1−(x^2 /n^2 ))  log(sinπx)−log(πx)=Σ_(n=1) ^∞ log(1−(x^2 /n^2 ))  π((cosπx)/(sinπx))−(π/(πx))=Σ_(n=1) ^∞ ((−((2x)/n^2 ))/(1−(x^2 /n^2 )))⇒πcot(πx)−(1/x)=Σ_(n=1) ^∞ ((2x)/(x^2 −n^2 ))  ⇒πxcot(πx)=1−2Σ_(n=1) ^∞ ((x^2 /n^2 )/(1−(x^2 /n^2 )))⇒πxcot(πx)=1−2Σ_(n=1) ^∞ Σ_(k=1) ^∞ ((x/n))^(2k)   ⇒πxcot(πx)=1−2Σ_(k=1) ^∞ ζ(2k)x^(2k) ⇒πxi(((e^(πxi) +e^(−πxi) )/(e^(πxi) −e^(−πxi) )))=1−2Σ^∞ ζ(2k)x^(2k)   ⇒πxi+((2πxi)/(e^(2πxi) −1))=1−2Σ_(k≥1) ^∞ ζ(2k)x^(2k) ⇒1−Σ_(k≥0) ^∞ (β_(2k) /(2(2k!)))(2πix)^(2k)   ζ(2k)x^(2k) =(β_(2k) /(2(2k!)))(2πix)^(2k) ⇒ζ(2k)=(−1)^(k+1) ((β_(2k) (2π)^(2k) )/(2(2k!)))

$$\frac{{sin}\pi{x}}{\pi{x}}=\overset{\infty} {\prod}\left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{{n}^{\mathrm{2}} }\right) \\ $$$${log}\left({sin}\pi{x}\right)−{log}\left(\pi{x}\right)=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{log}\left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{{n}^{\mathrm{2}} }\right) \\ $$$$\pi\frac{{cos}\pi{x}}{{sin}\pi{x}}−\frac{\pi}{\pi{x}}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{−\frac{\mathrm{2}{x}}{{n}^{\mathrm{2}} }}{\mathrm{1}−\frac{{x}^{\mathrm{2}} }{{n}^{\mathrm{2}} }}\Rightarrow\pi{cot}\left(\pi{x}\right)−\frac{\mathrm{1}}{{x}}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{2}{x}}{{x}^{\mathrm{2}} −{n}^{\mathrm{2}} } \\ $$$$\Rightarrow\pi{xcot}\left(\pi{x}\right)=\mathrm{1}−\mathrm{2}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\frac{{x}^{\mathrm{2}} }{{n}^{\mathrm{2}} }}{\mathrm{1}−\frac{{x}^{\mathrm{2}} }{{n}^{\mathrm{2}} }}\Rightarrow\pi{xcot}\left(\pi{x}\right)=\mathrm{1}−\mathrm{2}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{{x}}{{n}}\right)^{\mathrm{2}{k}} \\ $$$$\Rightarrow\pi{xcot}\left(\pi{x}\right)=\mathrm{1}−\mathrm{2}\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\zeta\left(\mathrm{2}{k}\right){x}^{\mathrm{2}{k}} \Rightarrow\pi{xi}\left(\frac{{e}^{\pi{xi}} +{e}^{−\pi{xi}} }{{e}^{\pi{xi}} −{e}^{−\pi{xi}} }\right)=\mathrm{1}−\mathrm{2}\overset{\infty} {\sum}\zeta\left(\mathrm{2}{k}\right){x}^{\mathrm{2}{k}} \\ $$$$\Rightarrow\pi{xi}+\frac{\mathrm{2}\pi{xi}}{{e}^{\mathrm{2}\pi{xi}} −\mathrm{1}}=\mathrm{1}−\mathrm{2}\underset{{k}\geqslant\mathrm{1}} {\overset{\infty} {\sum}}\zeta\left(\mathrm{2}{k}\right){x}^{\mathrm{2}{k}} \Rightarrow\mathrm{1}−\underset{{k}\geqslant\mathrm{0}} {\overset{\infty} {\sum}}\frac{\beta_{\mathrm{2}{k}} }{\mathrm{2}\left(\mathrm{2}{k}!\right)}\left(\mathrm{2}\pi{ix}\right)^{\mathrm{2}{k}} \\ $$$$\zeta\left(\mathrm{2}{k}\right){x}^{\mathrm{2}{k}} =\frac{\beta_{\mathrm{2}{k}} }{\mathrm{2}\left(\mathrm{2}{k}!\right)}\left(\mathrm{2}\pi{ix}\right)^{\mathrm{2}{k}} \Rightarrow\zeta\left(\mathrm{2}{k}\right)=\left(−\mathrm{1}\right)^{{k}+\mathrm{1}} \frac{\beta_{\mathrm{2}{k}} \left(\mathrm{2}\pi\right)^{\mathrm{2}{k}} }{\mathrm{2}\left(\mathrm{2}{k}!\right)}\:\: \\ $$$$ \\ $$

Commented by mnjuly1970 last updated on 26/Dec/20

very nice  mr  payan  solution  with explanation..

$${very}\:{nice}\:\:{mr}\:\:{payan} \\ $$$${solution}\:\:{with}\:{explanation}.. \\ $$

Answered by liberty last updated on 26/Dec/20

via Fourier sine series    b_n =(2/π)∫_0 ^( π) (πx−x^2 )sin (nx) dx = (4/π).((1−(−1)^(n+1) )/n^3 )   b_n  =  { ((0 ; if n is odd)),(((8/(πn^3 )) ; if n even )) :}   writting n=2k−1 for some positive integer k  we get πx−x^2  ∼ Σ_(k=1) ^∞  ((8sin ((2k−1)x))/(π(2k−1)^3 ))   (2/π)∫_0 ^( π) (πx−x^2 )^2  dx = Σ_(k=1) ^∞ ((8/(π(2k−1)^3 )))^2   simplifying this yields  (π^4 /(15)) = ((64)/π^2 ) Σ_(k=1) ^∞ ((1/(2k−1)))^6  and Σ_(k=1) ^∞ (1/((2k−1)^6 )) = (π^6 /(960))  however   Σ_(k=1) ^∞ (1/((2k−1)^6 )) = Σ_(n=1) ^∞ (1/n^6 ) − Σ_(n=1) ^∞ (1/(2n)) = (1−(1/2^6 ))Σ_(n=1) ^∞  (1/n^6 )                    = ((63)/(64)) ζ(6)  ζ(6) = ((64)/(63)).(π^6 /(960)) = (π^6 /(945)).

$${via}\:{Fourier}\:{sine}\:{series}\: \\ $$$$\:{b}_{{n}} =\frac{\mathrm{2}}{\pi}\int_{\mathrm{0}} ^{\:\pi} \left(\pi{x}−{x}^{\mathrm{2}} \right)\mathrm{sin}\:\left({nx}\right)\:{dx}\:=\:\frac{\mathrm{4}}{\pi}.\frac{\mathrm{1}−\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} }{{n}^{\mathrm{3}} } \\ $$$$\:{b}_{{n}} \:=\:\begin{cases}{\mathrm{0}\:;\:{if}\:{n}\:{is}\:{odd}}\\{\frac{\mathrm{8}}{\pi{n}^{\mathrm{3}} }\:;\:{if}\:{n}\:{even}\:}\end{cases} \\ $$$$\:{writting}\:{n}=\mathrm{2}{k}−\mathrm{1}\:{for}\:{some}\:{positive}\:{integer}\:{k} \\ $$$${we}\:{get}\:\pi{x}−{x}^{\mathrm{2}} \:\sim\:\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{8sin}\:\left(\left(\mathrm{2}{k}−\mathrm{1}\right){x}\right)}{\pi\left(\mathrm{2}{k}−\mathrm{1}\right)^{\mathrm{3}} }\: \\ $$$$\frac{\mathrm{2}}{\pi}\int_{\mathrm{0}} ^{\:\pi} \left(\pi{x}−{x}^{\mathrm{2}} \right)^{\mathrm{2}} \:{dx}\:=\:\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{8}}{\pi\left(\mathrm{2}{k}−\mathrm{1}\right)^{\mathrm{3}} }\right)^{\mathrm{2}} \\ $$$${simplifying}\:{this}\:{yields} \\ $$$$\frac{\pi^{\mathrm{4}} }{\mathrm{15}}\:=\:\frac{\mathrm{64}}{\pi^{\mathrm{2}} }\:\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{\mathrm{2}{k}−\mathrm{1}}\right)^{\mathrm{6}} \:{and}\:\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{2}{k}−\mathrm{1}\right)^{\mathrm{6}} }\:=\:\frac{\pi^{\mathrm{6}} }{\mathrm{960}} \\ $$$${however}\: \\ $$$$\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{2}{k}−\mathrm{1}\right)^{\mathrm{6}} }\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{6}} }\:−\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{2}{n}}\:=\:\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{6}} }\right)\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{{n}^{\mathrm{6}} } \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\frac{\mathrm{63}}{\mathrm{64}}\:\zeta\left(\mathrm{6}\right) \\ $$$$\zeta\left(\mathrm{6}\right)\:=\:\frac{\mathrm{64}}{\mathrm{63}}.\frac{\pi^{\mathrm{6}} }{\mathrm{960}}\:=\:\frac{\pi^{\mathrm{6}} }{\mathrm{945}}. \\ $$

Commented by mnjuly1970 last updated on 26/Dec/20

very nice bravo mr   liberty   excellent...

$${very}\:{nice}\:{bravo}\:{mr}\:\:\:{liberty} \\ $$$$\:{excellent}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com