Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 127042 by benjo_mathlover last updated on 26/Dec/20

 ∫_(1/(√2)) ^( 1) ((arcsin x)/x^3 ) dx ?   ′ not nice integral ′

1/21arcsinxx3dx?notniceintegral

Commented by liberty last updated on 26/Dec/20

��������

Answered by liberty last updated on 26/Dec/20

L=∫_(1/(√2)) ^( 1) ((arcsin x)/x^3 ) dx = (−((arcsin x)/(2x^2 )))_(1/(√2)) ^1 +(1/2)∫_(1/(√2)) ^( 1) (dx/(x^2 (√(1−x^2 ))))  L= 0 + (1/2)∫_(1/(√2)) ^( 1) (dx/(x^2 (√(1−x^2 ))))   [ x = sin h ]   L=(1/2)∫_(π/4) ^( π/2)  ((cos h dh)/(sin^2 h (√(1−sin^2 h)))) = (1/2)∫_(π/4) ^( π/2)  cosec^2 h dh  L = −(1/2) [cot h ]_(π/4) ^(π/2)  = (1/2)

L=1/21arcsinxx3dx=(arcsinx2x2)1/21+121/21dxx21x2L=0+121/21dxx21x2[x=sinh]L=12π/4π/2coshdhsin2h1sin2h=12π/4π/2cosec2hdhL=12[coth]π/4π/2=12

Answered by mathmax by abdo last updated on 27/Dec/20

I =∫_(1/( (√2))) ^1  ((arcsinx)/x^3 )dx  by parts u^′  =x^(−3)  and v=arcsinx ⇒  I =[−(1/(2x^2 ))arcsinx]_(1/( (√2))) ^1 +∫_(1/( (√2))) ^1  (1/(2x^2 ))(dx/( (√(1−x^2 ))))  =−(1/2){(π/2)−2×(π/4)}+(1/2)∫_(1/( (√2))) ^1  (dx/(x^2 (√(1−x^2 ))))=(1/2)∫_(1/( (√2))) ^1  (dx/(x^2 (√(1−x^2 ))))  changement x=sint give ∫_(1/( (√2))) ^1  (dx/(x^2 (√(1−x^2 ))))=∫_(π/4) ^(π/2)  ((cost dt)/(sin^2 t cost))  =2∫_(π/4) ^(π/2)   (dt/(1−cos(2t)))=_(2t=α)   ∫_(π/2) ^π   (dα/(1−cosα)) =_(tan((α/2))=z)   =∫_1 ^∞  ((2dz)/((1+z^2 )(1−((1−z^2 )/(1+z^2 ))))) =2∫_1 ^∞  (dz/(1+z^2 −1+z^2 )) =∫_1 ^∞  (dz/z^2 )=[−(1/z)]_1 ^∞ =1 ⇒  ★I =(1/2)★

I=121arcsinxx3dxbypartsu=x3andv=arcsinxI=[12x2arcsinx]121+12112x2dx1x2=12{π22×π4}+12121dxx21x2=12121dxx21x2changementx=sintgive121dxx21x2=π4π2costdtsin2tcost=2π4π2dt1cos(2t)=2t=απ2πdα1cosα=tan(α2)=z=12dz(1+z2)(11z21+z2)=21dz1+z21+z2=1dzz2=[1z]1=1I=12

Terms of Service

Privacy Policy

Contact: info@tinkutara.com