Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 127081 by slahadjb last updated on 26/Dec/20

Solve in C  (((1+iz)/(1−iz)))^n =e_ ^(iθ_n )   θ_n  ∈ R  n ∈ N

$${Solve}\:{in}\:\mathbb{C} \\ $$$$\left(\frac{\mathrm{1}+{iz}}{\mathrm{1}−{iz}}\right)^{{n}} ={e}_{} ^{{i}\theta_{{n}} } \\ $$$$\theta_{{n}} \:\in\:\mathbb{R} \\ $$$${n}\:\in\:\mathbb{N} \\ $$

Answered by Dwaipayan Shikari last updated on 26/Dec/20

(((1+iz)/(1−iz)))^n =(((√(1+z^2 ))/( (√(1+z^2 )))).(e^((tan^(−1) z)i) /e^(−(tan^(−1) z)i) ))^n =e^(iθ_n )   ⇒e^(2n(tan^(−1) z)i) =e^(iθ_n ) ⇒θ_n =2ntan^(−1) z=2n(2π+tan^(−1) z)

$$\left(\frac{\mathrm{1}+{iz}}{\mathrm{1}−{iz}}\right)^{{n}} =\left(\frac{\sqrt{\mathrm{1}+{z}^{\mathrm{2}} }}{\:\sqrt{\mathrm{1}+{z}^{\mathrm{2}} }}.\frac{{e}^{\left({tan}^{−\mathrm{1}} {z}\right){i}} }{{e}^{−\left({tan}^{−\mathrm{1}} {z}\right){i}} }\right)^{{n}} ={e}^{{i}\theta_{{n}} } \\ $$$$\Rightarrow{e}^{\mathrm{2}{n}\left({tan}^{−\mathrm{1}} {z}\right){i}} ={e}^{{i}\theta_{{n}} } \Rightarrow\theta_{{n}} =\mathrm{2}{ntan}^{−\mathrm{1}} {z}=\mathrm{2}{n}\left(\mathrm{2}\pi+{tan}^{−\mathrm{1}} {z}\right) \\ $$

Commented by Olaf last updated on 26/Dec/20

I suppose z∈C, ∣1±iz∣ ≠ (√(1+z^2 ))

$$\mathrm{I}\:\mathrm{suppose}\:{z}\in\mathbb{C},\:\mid\mathrm{1}\pm{iz}\mid\:\neq\:\sqrt{\mathrm{1}+{z}^{\mathrm{2}} } \\ $$

Commented by Escritor last updated on 26/Dec/20

Excellent

$${Excellent} \\ $$

Answered by mathmax by abdo last updated on 26/Dec/20

(((1+iz)/(1−iz)))^n  =e^(iθ_n )  =e^(i(θ_n +2kπ))  ⇒((1+iz_k )/(1−iz_k )) =e^(i(((θ_n +2kπ)/n)))  ⇒  1+iz_k =e^(i(((θ_n +2kπ)/n))) −ie^(i(((θ_n +2kπ)/n)))  z_k  ⇒i(1+e^(i(((θ_n +2kπ)/n))) )z_k =e^(i(((θ_n +2kπ)/n))) −1 ⇒  z_k =−((1−e^(i(((θ_n +2kπ)/n))) )/(1+e^(i(((θ_n +2kπ)/n))) )) =−((1−cos(((θ_n +2kπ)/n))−isin(((θ_n +2kπ)/n)))/(1+cos(((θ_n +2kπ)/n))+isin(((θ_n +2kπ)/n))))  =−((2sin^2 (((θ_n +2kπ)/(2n)))−2isin(((θ_n +2kπ)/(2n)))cos(((θ_n +2kπ)/(2n))))/(2cos^2 (((θ_n +2kπ)/(2n)))+2isin(((θ_n +2kπ)/(2n)))cos(((θ_n +2kπ)/(2n)))))  −((−isin(((θ_n +2kπ)/(2n)))e^(i(((θ_n +2kπ)/(2n)))) )/(cos(((θ_n +2kπ)/(2n))) e^(i(((θ_n +2kπ)/(2n)))) ))=itan(((θ_n +2kπ)/(2n)))  with k∈[[0,n−1]]

$$\left(\frac{\mathrm{1}+\mathrm{iz}}{\mathrm{1}−\mathrm{iz}}\right)^{\mathrm{n}} \:=\mathrm{e}^{\mathrm{i}\theta_{\mathrm{n}} } \:=\mathrm{e}^{\mathrm{i}\left(\theta_{\mathrm{n}} +\mathrm{2k}\pi\right)} \:\Rightarrow\frac{\mathrm{1}+\mathrm{iz}_{\mathrm{k}} }{\mathrm{1}−\mathrm{iz}_{\mathrm{k}} }\:=\mathrm{e}^{\mathrm{i}\left(\frac{\theta_{\mathrm{n}} +\mathrm{2k}\pi}{\mathrm{n}}\right)} \:\Rightarrow \\ $$$$\mathrm{1}+\mathrm{iz}_{\mathrm{k}} =\mathrm{e}^{\mathrm{i}\left(\frac{\theta_{\mathrm{n}} +\mathrm{2k}\pi}{\mathrm{n}}\right)} −\mathrm{ie}^{\mathrm{i}\left(\frac{\theta_{\mathrm{n}} +\mathrm{2k}\pi}{\mathrm{n}}\right)} \:\mathrm{z}_{\mathrm{k}} \:\Rightarrow\mathrm{i}\left(\mathrm{1}+\mathrm{e}^{\mathrm{i}\left(\frac{\theta_{\mathrm{n}} +\mathrm{2k}\pi}{\mathrm{n}}\right)} \right)\mathrm{z}_{\mathrm{k}} =\mathrm{e}^{\mathrm{i}\left(\frac{\theta_{\mathrm{n}} +\mathrm{2k}\pi}{\mathrm{n}}\right)} −\mathrm{1}\:\Rightarrow \\ $$$$\mathrm{z}_{\mathrm{k}} =−\frac{\mathrm{1}−\mathrm{e}^{\mathrm{i}\left(\frac{\theta_{\mathrm{n}} +\mathrm{2k}\pi}{\mathrm{n}}\right)} }{\mathrm{1}+\mathrm{e}^{\mathrm{i}\left(\frac{\theta_{\mathrm{n}} +\mathrm{2k}\pi}{\mathrm{n}}\right)} }\:=−\frac{\mathrm{1}−\mathrm{cos}\left(\frac{\theta_{\mathrm{n}} +\mathrm{2k}\pi}{\mathrm{n}}\right)−\mathrm{isin}\left(\frac{\theta_{\mathrm{n}} +\mathrm{2k}\pi}{\mathrm{n}}\right)}{\mathrm{1}+\mathrm{cos}\left(\frac{\theta_{\mathrm{n}} +\mathrm{2k}\pi}{\mathrm{n}}\right)+\mathrm{isin}\left(\frac{\theta_{\mathrm{n}} +\mathrm{2k}\pi}{\mathrm{n}}\right)} \\ $$$$=−\frac{\mathrm{2sin}^{\mathrm{2}} \left(\frac{\theta_{\mathrm{n}} +\mathrm{2k}\pi}{\mathrm{2n}}\right)−\mathrm{2isin}\left(\frac{\theta_{\mathrm{n}} +\mathrm{2k}\pi}{\mathrm{2n}}\right)\mathrm{cos}\left(\frac{\theta_{\mathrm{n}} +\mathrm{2k}\pi}{\mathrm{2n}}\right)}{\mathrm{2cos}^{\mathrm{2}} \left(\frac{\theta_{\mathrm{n}} +\mathrm{2k}\pi}{\mathrm{2n}}\right)+\mathrm{2isin}\left(\frac{\theta_{\mathrm{n}} +\mathrm{2k}\pi}{\mathrm{2n}}\right)\mathrm{cos}\left(\frac{\theta_{\mathrm{n}} +\mathrm{2k}\pi}{\mathrm{2n}}\right)} \\ $$$$−\frac{−\mathrm{isin}\left(\frac{\theta_{\mathrm{n}} +\mathrm{2k}\pi}{\mathrm{2n}}\right)\mathrm{e}^{\mathrm{i}\left(\frac{\theta_{\mathrm{n}} +\mathrm{2k}\pi}{\mathrm{2n}}\right)} }{\mathrm{cos}\left(\frac{\theta_{\mathrm{n}} +\mathrm{2k}\pi}{\mathrm{2n}}\right)\:\mathrm{e}^{\mathrm{i}\left(\frac{\theta_{\mathrm{n}} +\mathrm{2k}\pi}{\mathrm{2n}}\right)} }=\mathrm{itan}\left(\frac{\theta_{\mathrm{n}} +\mathrm{2k}\pi}{\mathrm{2n}}\right)\:\:\mathrm{with}\:\mathrm{k}\in\left[\left[\mathrm{0},\mathrm{n}−\mathrm{1}\right]\right] \\ $$

Commented by slahadjb last updated on 28/Dec/20

Z^n =e^(i(θ+2kΠ)) ⇏Z=e^(i(((θ+2kΠ))/n))   examle Z=i     n =2  Z^2 =i^2 =e^(i(Π+2kΠ))   e^(i(((Π+2kΠ))/2)) =i or −i

$${Z}^{{n}} ={e}^{{i}\left(\theta+\mathrm{2}{k}\Pi\right)} \nRightarrow{Z}={e}^{{i}\frac{\left(\theta+\mathrm{2}{k}\Pi\right)}{{n}}} \\ $$$${examle}\:{Z}={i}\:\:\:\:\:{n}\:=\mathrm{2} \\ $$$${Z}^{\mathrm{2}} ={i}^{\mathrm{2}} ={e}^{{i}\left(\Pi+\mathrm{2}{k}\Pi\right)} \\ $$$${e}^{{i}\frac{\left(\Pi+\mathrm{2}{k}\Pi\right)}{\mathrm{2}}} ={i}\:{or}\:−{i} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com