Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 127094 by kolos last updated on 26/Dec/20

Commented by kolos last updated on 26/Dec/20

can anyone prove this?

$${can}\:{anyone}\:{prove}\:{this}? \\ $$

Answered by mindispower last updated on 27/Dec/20

x−(1/2)−(1/π)arctan(tg(πx−(π/2)))=f(x)  f(1+x)=x+(1/2)−(1/π)arctan(tg(πx+π−(π/2)))  =x+(1/2)−arctan(tg(πx−(π/2))=1+x−(1/2)−(1/π)arctan(tg(π(x−(1/2)))  =1+f(x)  suffisent to show ∀x∈[0,1[  [x]=x−(1/2)−((arctan(tg(π(x−(1/2)))))/π)   arctan(tg(π(x−(1/2))).(1/π)  x∈[0,1[]π(x−(1/2))∈[−(π/2),(π/2)]  arctan(tg(π(x−(1/2)))=π(x−(1/2))  f(x)=x−(1/2)−(1/π)π(x−(1/2))=0=[x],∀x∈[0,1[  f(1+x)=1+f(x)=[1+x]=1+[x]⇒  by translation ∀x∈R  [x]=x−(1/2)−((arctan(tg(π(x−(1/2))))/π)

$${x}−\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\pi}{arctan}\left({tg}\left(\pi{x}−\frac{\pi}{\mathrm{2}}\right)\right)={f}\left({x}\right) \\ $$$${f}\left(\mathrm{1}+{x}\right)={x}+\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\pi}{arctan}\left({tg}\left(\pi{x}+\pi−\frac{\pi}{\mathrm{2}}\right)\right) \\ $$$$={x}+\frac{\mathrm{1}}{\mathrm{2}}−{arctan}\left({tg}\left(\pi{x}−\frac{\pi}{\mathrm{2}}\right)=\mathrm{1}+{x}−\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\pi}{arctan}\left({tg}\left(\pi\left({x}−\frac{\mathrm{1}}{\mathrm{2}}\right)\right)\right.\right. \\ $$$$=\mathrm{1}+{f}\left({x}\right) \\ $$$${suffisent}\:{to}\:{show}\:\forall{x}\in\left[\mathrm{0},\mathrm{1}\left[\right.\right. \\ $$$$\left[{x}\right]={x}−\frac{\mathrm{1}}{\mathrm{2}}−\frac{{arctan}\left({tg}\left(\pi\left({x}−\frac{\mathrm{1}}{\mathrm{2}}\right)\right)\right)}{\pi}\: \\ $$$${arctan}\left({tg}\left(\pi\left({x}−\frac{\mathrm{1}}{\mathrm{2}}\right)\right).\frac{\mathrm{1}}{\pi}\right. \\ $$$${x}\in\left[\mathrm{0},\mathrm{1}\left[\right]\pi\left({x}−\frac{\mathrm{1}}{\mathrm{2}}\right)\in\left[−\frac{\pi}{\mathrm{2}},\frac{\pi}{\mathrm{2}}\right]\right. \\ $$$${arctan}\left({tg}\left(\pi\left({x}−\frac{\mathrm{1}}{\mathrm{2}}\right)\right)=\pi\left({x}−\frac{\mathrm{1}}{\mathrm{2}}\right)\right. \\ $$$${f}\left({x}\right)={x}−\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\pi}\pi\left({x}−\frac{\mathrm{1}}{\mathrm{2}}\right)=\mathrm{0}=\left[{x}\right],\forall{x}\in\left[\mathrm{0},\mathrm{1}\left[\right.\right. \\ $$$${f}\left(\mathrm{1}+{x}\right)=\mathrm{1}+{f}\left({x}\right)=\left[\mathrm{1}+{x}\right]=\mathrm{1}+\left[{x}\right]\Rightarrow \\ $$$${by}\:{translation}\:\forall{x}\in\mathbb{R} \\ $$$$\left[{x}\right]={x}−\frac{\mathrm{1}}{\mathrm{2}}−\frac{{arctan}\left({tg}\left(\pi\left({x}−\frac{\mathrm{1}}{\mathrm{2}}\right)\right)\right.}{\pi} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com