Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 127111 by benjo_mathlover last updated on 26/Dec/20

 find the value of x such that     { ((x=2 (mod 5))),((x=3 (mod 8) )),((x=2 (mod 3))) :}

findthevalueofxsuchthat{x=2(mod5)x=3(mod8)x=2(mod3)

Answered by liberty last updated on 04/Jan/21

given  { ((x=2 (mod 5)...(i))),((x=3 (mod 8)...(ii))),((x=2 (mod 3)...(iii))) :}  for(i) ⇒ 24a ≡ 2 (mod 5)                          −a≡2 (mod 5); a ≡−2 (mod 5)  for(ii)⇒15b ≡ 3 (mod 8)                         −b ≡ 3 (mod 8) ; b ≡−3 (mod 8)  for(iii)⇒40c ≡ 2 (mod 3)                            c ≡ 2 (mod 3)  now we have the general solution   ∴ 24(−2)+15(−3)+40(2)+120k ; k∈Z  i.e : 120k−13 ; k∈Z or 120k +107 ; k∈Z

given{x=2(mod5)...(i)x=3(mod8)...(ii)x=2(mod3)...(iii)for(i)24a2(mod5)a2(mod5);a2(mod5)for(ii)15b3(mod8)b3(mod8);b3(mod8)for(iii)40c2(mod3)c2(mod3)nowwehavethegeneralsolution24(2)+15(3)+40(2)+120k;kZi.e:120k13;kZor120k+107;kZ

Answered by physicstutes last updated on 27/Dec/20

x ≡ 2 (mod 3) .....(i) ⇒ x = 3t + 2 , t ∈ Z......(i)   x ≡ 3 (mod 8)......(ii)  (i) in (i) ⇒ 3t + 2 ≡ 3 (mod 8)   3t ≡ −1 (mod 8)  but −1 ≡ 7 (mod 8)  therefore    3t ≡ 7 (mod 8) by trial and error we find a number t which when  multiplied by 3 and divided by 8 gives a remainder of 7.   so i find t = 3 after some tries.  ⇒ t ≡ 3 (mod 8) ⇒ t = 8s + 3 , s ∈ Z......(iii)  putting (iii) in (i) ⇒ x = 3(8s + 3) +2 = 24s +11   so :    x = 24 s + 11 .....(iv)    x ≡ 2 (mod 5)......(v)  (iv) in (v) ⇒   24s +11 ≡ 2 (mod 5)   24 s ≡ −9 (mod 5)   but −9 ≡ 1 (mod 5) therefore  24s ≡ 1 (mod 5) by trial and error   s ≡ 4 (mod 5) ⇒ s = 5u + 4 .....(vii) u ∈ Z  ⇒ x = 24(5u + 4) + 11       x = 120 u +107  x ≡ 107 (mod 120)

x2(mod3).....(i)x=3t+2,tZ......(i)x3(mod8)......(ii)(i)in(i)3t+23(mod8)3t1(mod8)but17(mod8)therefore3t7(mod8)bytrialanderrorwefindanumbertwhichwhenmultipliedby3anddividedby8givesaremainderof7.soifindt=3aftersometries.t3(mod8)t=8s+3,sZ......(iii)putting(iii)in(i)x=3(8s+3)+2=24s+11so:x=24s+11.....(iv)x2(mod5)......(v)(iv)in(v)24s+112(mod5)24s9(mod5)but91(mod5)therefore24s1(mod5)bytrialanderrors4(mod5)s=5u+4.....(vii)uZx=24(5u+4)+11x=120u+107x107(mod120)

Answered by floor(10²Eta[1]) last updated on 27/Dec/20

x≡3(mod8)⇒x=8a+3, a∈Z  8a+3≡3a+3≡2(mod5)  3a≡4(mod5)⇒a≡3(mod5)  ⇒a=5b+3  ⇒x=8(5b+3)+3=40b+27, b∈Z  40b+27≡b≡2(mod3)⇒b=3c+2  ⇒x=40(3c+2)+27  ⇒x=120c+107, c∈Z

x3(mod8)x=8a+3,aZ8a+33a+32(mod5)3a4(mod5)a3(mod5)a=5b+3x=8(5b+3)+3=40b+27,bZ40b+27b2(mod3)b=3c+2x=40(3c+2)+27x=120c+107,cZ

Terms of Service

Privacy Policy

Contact: info@tinkutara.com