Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 127160 by kaivan.ahmadi last updated on 27/Dec/20

R ={(x,y): (x−2)^2 +y^2 ≤4}  ∫∫_R  (x^2 +y^2 )^2 dydx=?

R={(x,y):(x2)2+y24}R(x2+y2)2dydx=?

Answered by mathmax by abdo last updated on 27/Dec/20

we use the diffeomorphism   { ((x−2=rcosθ)),((y=rsinθ)) :}  (x−2)^2  +y^2  ≤4 ⇒r^2  ≤4 ⇒0≤r≤2  ∫∫_R (x^2  +y^2 )^2 dxdy =∫_0 ^2  ∫_(−π) ^π ((rcosθ +2)^2  +r^2 sin^2 θ)^2  rdrdθ  = ∫_0 ^2 ∫_(−π) ^π {r^2  cos^2 θ +4rcosθ +4+r^2 sin^2 θ)^2 drdθ  = ∫_0 ^2 ∫_(−π) ^π {r^2  +4rcosθ +4)^2 drdθ    =∫_0 ^2  ∫_(−π) ^π {(r^2  +4)^2  +8rcosθ(r^2 +4)+16r^2  cos^2 θ}drdθ  =2π ∫_0 ^2 (r^2  +4)^(2 ) dr +8 ∫_0 ^2  (r^3  +4r)dr∫_(−π) ^π  cosθ dθ(→0)+16∫_0 ^2 r^2 dr∫_(−π) ^π  cos^2 θ dθ  ∫_0 ^2 (r^2  +4)^2  dr =∫_0 ^2 (r^4  +8r^2  +16)dr =[(r^5 /5)+(8/3)r^3  +16r]_0 ^2  =....  ∫_0 ^2  r^2 dr =[(r^3 /3)]_0 ^2  =(8/3)  ∫_(−π) ^π  cos^2 θ dθ =2∫_0 ^π  ((1+cos(2θ))/2)dθ =π  rest to collect the values...

weusethediffeomorphism{x2=rcosθy=rsinθ(x2)2+y24r240r2R(x2+y2)2dxdy=02ππ((rcosθ+2)2+r2sin2θ)2rdrdθ=02ππ{r2cos2θ+4rcosθ+4+r2sin2θ)2drdθ=02ππ{r2+4rcosθ+4)2drdθ=02ππ{(r2+4)2+8rcosθ(r2+4)+16r2cos2θ}drdθ=2π02(r2+4)2dr+802(r3+4r)drππcosθdθ(0)+1602r2drππcos2θdθ02(r2+4)2dr=02(r4+8r2+16)dr=[r55+83r3+16r]02=....02r2dr=[r33]02=83ππcos2θdθ=20π1+cos(2θ)2dθ=πresttocollectthevalues...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com