All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 127160 by kaivan.ahmadi last updated on 27/Dec/20
R={(x,y):(x−2)2+y2⩽4}∫∫R(x2+y2)2dydx=?
Answered by mathmax by abdo last updated on 27/Dec/20
weusethediffeomorphism{x−2=rcosθy=rsinθ(x−2)2+y2⩽4⇒r2⩽4⇒0⩽r⩽2∫∫R(x2+y2)2dxdy=∫02∫−ππ((rcosθ+2)2+r2sin2θ)2rdrdθ=∫02∫−ππ{r2cos2θ+4rcosθ+4+r2sin2θ)2drdθ=∫02∫−ππ{r2+4rcosθ+4)2drdθ=∫02∫−ππ{(r2+4)2+8rcosθ(r2+4)+16r2cos2θ}drdθ=2π∫02(r2+4)2dr+8∫02(r3+4r)dr∫−ππcosθdθ(→0)+16∫02r2dr∫−ππcos2θdθ∫02(r2+4)2dr=∫02(r4+8r2+16)dr=[r55+83r3+16r]02=....∫02r2dr=[r33]02=83∫−ππcos2θdθ=2∫0π1+cos(2θ)2dθ=πresttocollectthevalues...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com