Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 127182 by danielasebhofoh last updated on 27/Dec/20

Answered by Dwaipayan Shikari last updated on 27/Dec/20

∫_0 ^1 e^((iπx)/2) dx               i^x =e^((iπx)/2)   =(2/(πi))(e^((iπ)/2) −1)=(2/(πi))(i−1)=(2/π)−(2/(πi))=(2/π)(1+i)

$$\int_{\mathrm{0}} ^{\mathrm{1}} {e}^{\frac{{i}\pi{x}}{\mathrm{2}}} {dx}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{i}^{{x}} ={e}^{\frac{{i}\pi{x}}{\mathrm{2}}} \\ $$$$=\frac{\mathrm{2}}{\pi{i}}\left({e}^{\frac{{i}\pi}{\mathrm{2}}} −\mathrm{1}\right)=\frac{\mathrm{2}}{\pi{i}}\left({i}−\mathrm{1}\right)=\frac{\mathrm{2}}{\pi}−\frac{\mathrm{2}}{\pi{i}}=\frac{\mathrm{2}}{\pi}\left(\mathrm{1}+{i}\right) \\ $$

Answered by Ar Brandon last updated on 27/Dec/20

I=∫_0 ^1 i^x dx=[(i^x /(lni))]_0 ^1 =(i/(lni))−(1/(lni)) , i=e^((π/2)i)      =(i/((π/2)i))−(1/((π/2)i))=(2/π)−(2/(iπ))

$$\mathcal{I}=\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{i}^{\mathrm{x}} \mathrm{dx}=\left[\frac{\mathrm{i}^{\mathrm{x}} }{\mathrm{lni}}\right]_{\mathrm{0}} ^{\mathrm{1}} =\frac{\mathrm{i}}{\mathrm{lni}}−\frac{\mathrm{1}}{\mathrm{lni}}\:,\:\mathrm{i}=\mathrm{e}^{\frac{\pi}{\mathrm{2}}\mathrm{i}} \\ $$$$\:\:\:=\frac{\mathrm{i}}{\left(\pi/\mathrm{2}\right)\mathrm{i}}−\frac{\mathrm{1}}{\left(\pi/\mathrm{2}\right)\mathrm{i}}=\frac{\mathrm{2}}{\pi}−\frac{\mathrm{2}}{\mathrm{i}\pi} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com