Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 127211 by mohammad17 last updated on 27/Dec/20

∫_0 ^( π^2 ) x^(−(1/2)) e^(−x) dx

$$\int_{\mathrm{0}} ^{\:\pi^{\mathrm{2}} } {x}^{−\frac{\mathrm{1}}{\mathrm{2}}} {e}^{−{x}} {dx} \\ $$

Answered by Dwaipayan Shikari last updated on 27/Dec/20

∫_0 ^π^2  x^(−(1/2)) e^(−x) dx            x=u^2 ⇒1=2u(du/dx)  =2∫_0 ^π e^(−u^2 ) du=2∫_0 ^∞ e^(−u^2 ) du−2∫_π ^∞ e^(−u^2 ) du  =(√π)−((2e^(−π^2 ) )/(2π+(1/(π+(2/(2π+(3/(π+...))))))))  Or ∫_0 ^π^2  x^(−(1/2)) e^(−x) dx=∫_0 ^∞ x^(−(1/2)) e^(−x) −∫_π^2  ^∞ x^(−(1/2)) e^(−x^2 ) =Γ((1/2))−Γ((1/2),π^2 )  Incomplete Gamma Γ(a,z)=∫_z ^∞ t^(a−1) e^(−t) dt

$$\int_{\mathrm{0}} ^{\pi^{\mathrm{2}} } {x}^{−\frac{\mathrm{1}}{\mathrm{2}}} {e}^{−{x}} {dx}\:\:\:\:\:\:\:\:\:\:\:\:{x}={u}^{\mathrm{2}} \Rightarrow\mathrm{1}=\mathrm{2}{u}\frac{{du}}{{dx}} \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\pi} {e}^{−{u}^{\mathrm{2}} } {du}=\mathrm{2}\int_{\mathrm{0}} ^{\infty} {e}^{−{u}^{\mathrm{2}} } {du}−\mathrm{2}\int_{\pi} ^{\infty} {e}^{−{u}^{\mathrm{2}} } {du} \\ $$$$=\sqrt{\pi}−\frac{\mathrm{2}{e}^{−\pi^{\mathrm{2}} } }{\mathrm{2}\pi+\frac{\mathrm{1}}{\pi+\frac{\mathrm{2}}{\mathrm{2}\pi+\frac{\mathrm{3}}{\pi+...}}}} \\ $$$${Or}\:\int_{\mathrm{0}} ^{\pi^{\mathrm{2}} } {x}^{−\frac{\mathrm{1}}{\mathrm{2}}} {e}^{−{x}} {dx}=\int_{\mathrm{0}} ^{\infty} {x}^{−\frac{\mathrm{1}}{\mathrm{2}}} {e}^{−{x}} −\int_{\pi^{\mathrm{2}} } ^{\infty} {x}^{−\frac{\mathrm{1}}{\mathrm{2}}} {e}^{−{x}^{\mathrm{2}} } =\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)−\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}},\pi^{\mathrm{2}} \right) \\ $$$${Incomplete}\:{Gamma}\:\Gamma\left({a},{z}\right)=\int_{{z}} ^{\infty} {t}^{{a}−\mathrm{1}} {e}^{−{t}} {dt} \\ $$

Commented by mohammad17 last updated on 27/Dec/20

sir is the value infinte or finite ?

$${sir}\:{is}\:{the}\:{value}\:{infinte}\:{or}\:{finite}\:? \\ $$

Commented by Dwaipayan Shikari last updated on 27/Dec/20

Finite, It is a continued fraction  Q127186

$${Finite},\:{It}\:{is}\:{a}\:{continued}\:{fraction} \\ $$$${Q}\mathrm{127186} \\ $$

Answered by mindispower last updated on 28/Dec/20

Σ_(k≥0) ∫^π^2  x^(−(1/2)) .(((−x)^k )/(k!))dx  =Σ_(k≥0) (((−1)^k )/(k!))∫_0 ^π^2  x^(k−(1/2)) dx  =Σ_(k≥0) (((−1)^k )/(k!))[(x^(k+(1/2)) /(k+(1/2)))]_0 ^π =Σ_(k≥0) (((−1)^k π^(2k+1) )/((k+(1/2))k!))  =2π+2πΣ_(k≥1) ((Π_(j=0) ^(k−1) ((1/2)+j))/(Π_(j=0) ^(k−1) ((3/2)+j))).(((−π^2 )^k )/(k!))  =2π(1+Σ_(k≥1) ((((1/2))_k )/(((3/2))_k )).(((−π^2 )^k )/(k!)))  =2π_1 F_1 ((1/2);(3/2);−π^2 )

$$\underset{{k}\geqslant\mathrm{0}} {\sum}\int^{\pi^{\mathrm{2}} } {x}^{−\frac{\mathrm{1}}{\mathrm{2}}} .\frac{\left(−{x}\right)^{{k}} }{{k}!}{dx} \\ $$$$=\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{{k}} }{{k}!}\int_{\mathrm{0}} ^{\pi^{\mathrm{2}} } {x}^{{k}−\frac{\mathrm{1}}{\mathrm{2}}} {dx} \\ $$$$=\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{{k}} }{{k}!}\left[\frac{{x}^{{k}+\frac{\mathrm{1}}{\mathrm{2}}} }{{k}+\frac{\mathrm{1}}{\mathrm{2}}}\right]_{\mathrm{0}} ^{\pi} =\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{{k}} \pi^{\mathrm{2}{k}+\mathrm{1}} }{\left({k}+\frac{\mathrm{1}}{\mathrm{2}}\right){k}!} \\ $$$$=\mathrm{2}\pi+\mathrm{2}\pi\underset{{k}\geqslant\mathrm{1}} {\sum}\frac{\underset{{j}=\mathrm{0}} {\overset{{k}−\mathrm{1}} {\prod}}\left(\frac{\mathrm{1}}{\mathrm{2}}+{j}\right)}{\underset{{j}=\mathrm{0}} {\overset{{k}−\mathrm{1}} {\prod}}\left(\frac{\mathrm{3}}{\mathrm{2}}+{j}\right)}.\frac{\left(−\pi^{\mathrm{2}} \right)^{{k}} }{{k}!} \\ $$$$=\mathrm{2}\pi\left(\mathrm{1}+\underset{{k}\geqslant\mathrm{1}} {\sum}\frac{\left(\frac{\mathrm{1}}{\mathrm{2}}\right)_{{k}} }{\left(\frac{\mathrm{3}}{\mathrm{2}}\right)_{{k}} }.\frac{\left(−\pi^{\mathrm{2}} \right)^{{k}} }{{k}!}\right) \\ $$$$=\mathrm{2}\pi_{\mathrm{1}} {F}_{\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}};\frac{\mathrm{3}}{\mathrm{2}};−\pi^{\mathrm{2}} \right) \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com