Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 127501 by slahadjb last updated on 30/Dec/20

prove the convergence of (α_n )_(n ) such that   tan^(−1) ((α_n /n))−2α_n +1=0

$${prove}\:{the}\:{convergence}\:{of}\:\left(\alpha_{{n}} \right)_{{n}\:} {such}\:{that}\: \\ $$$$\mathrm{tan}^{−\mathrm{1}} \left(\frac{\alpha_{{n}} }{{n}}\right)−\mathrm{2}\alpha_{{n}} +\mathrm{1}=\mathrm{0} \\ $$

Answered by mindispower last updated on 31/Dec/20

⇒2a_n =1+tan^− ((a_n /n))⇒a_n ∈[−(π/4)+(1/2),(π/4)+(1/2)]  bounded⇒lim_(n→∞) (a_n /n)→0  ⇒tan^− ((α_n /n))+1⇒1sinceg: x→tan^(−1) (x)+1 is continus  2a_n =g((a_n /n)),2a_n →g(0)=1  a_n →(1/2)

$$\Rightarrow\mathrm{2}{a}_{{n}} =\mathrm{1}+{tan}^{−} \left(\frac{{a}_{{n}} }{{n}}\right)\Rightarrow{a}_{{n}} \in\left[−\frac{\pi}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{2}},\frac{\pi}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{2}}\right] \\ $$$${bounded}\Rightarrow\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{{a}_{{n}} }{{n}}\rightarrow\mathrm{0} \\ $$$$\Rightarrow{tan}^{−} \left(\frac{\alpha_{{n}} }{{n}}\right)+\mathrm{1}\Rightarrow\mathrm{1}{sinceg}:\:{x}\rightarrow\mathrm{tan}^{−\mathrm{1}} \left({x}\right)+\mathrm{1}\:{is}\:{continus} \\ $$$$\mathrm{2}{a}_{{n}} ={g}\left(\frac{{a}_{{n}} }{{n}}\right),\mathrm{2}{a}_{{n}} \rightarrow{g}\left(\mathrm{0}\right)=\mathrm{1} \\ $$$${a}_{{n}} \rightarrow\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Commented by slahadjb last updated on 31/Dec/20

Thank you. Can we prove that (α_n ) is monotone ?

$${Thank}\:{you}.\:{Can}\:{we}\:{prove}\:{that}\:\left(\alpha_{{n}} \right)\:{is}\:{monotone}\:? \\ $$

Commented by mindispower last updated on 31/Dec/20

2a_n =1+tan^− ((a_n /n))  1=2a_n −tan^− (((an)/n))  f(x)=2x−tan^− ((x/n)),  2a_n −tan^− ((a_n /(n+1)))=1+tan^− ((a_n /n))−tan^− ((a_n /(n+1)))>1  a_n >0,∀n≥4  ≥2a_(n+1) −tan^− ((a_(n+1) /(n+1)))=f(a_(n+1) )  f(a_n )≥f(a_(n+1) )⇒a_n >a_(n+1)   n>4,causef  is increase

$$\mathrm{2}{a}_{{n}} =\mathrm{1}+{tan}^{−} \left(\frac{{a}_{{n}} }{{n}}\right) \\ $$$$\mathrm{1}=\mathrm{2}{a}_{{n}} −{tan}^{−} \left(\frac{{an}}{{n}}\right) \\ $$$${f}\left({x}\right)=\mathrm{2}{x}−{tan}^{−} \left(\frac{{x}}{{n}}\right), \\ $$$$\mathrm{2}{a}_{{n}} −{tan}^{−} \left(\frac{{a}_{{n}} }{{n}+\mathrm{1}}\right)=\mathrm{1}+{tan}^{−} \left(\frac{{a}_{{n}} }{{n}}\right)−{tan}^{−} \left(\frac{{a}_{{n}} }{{n}+\mathrm{1}}\right)>\mathrm{1} \\ $$$${a}_{{n}} >\mathrm{0},\forall{n}\geqslant\mathrm{4} \\ $$$$\geqslant\mathrm{2}{a}_{{n}+\mathrm{1}} −{tan}^{−} \left(\frac{{a}_{{n}+\mathrm{1}} }{{n}+\mathrm{1}}\right)={f}\left({a}_{{n}+\mathrm{1}} \right) \\ $$$${f}\left({a}_{{n}} \right)\geqslant{f}\left({a}_{{n}+\mathrm{1}} \right)\Rightarrow{a}_{{n}} >{a}_{{n}+\mathrm{1}} \:\:{n}>\mathrm{4},{causef}\:\:{is}\:{increase} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by slahadjb last updated on 31/Dec/20

thank you so much.

$${thank}\:{you}\:{so}\:{much}. \\ $$

Commented by mindispower last updated on 31/Dec/20

pleasur

$${pleasur} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com