Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 127532 by MathSh last updated on 30/Dec/20

Solve the equation:  71a+3b=2021

$${Solve}\:{the}\:{equation}: \\ $$$$\mathrm{71}{a}+\mathrm{3}{b}=\mathrm{2021} \\ $$

Commented by mr W last updated on 30/Dec/20

see Q44819

$${see}\:{Q}\mathrm{44819} \\ $$

Answered by Ar Brandon last updated on 30/Dec/20

2021=28(71)+33             =71(28)+3(11)  (a,b)=(28,11) is a solution

$$\mathrm{2021}=\mathrm{28}\left(\mathrm{71}\right)+\mathrm{33} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\mathrm{71}\left(\mathrm{28}\right)+\mathrm{3}\left(\mathrm{11}\right) \\ $$$$\left(\mathrm{a},\mathrm{b}\right)=\left(\mathrm{28},\mathrm{11}\right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{solution} \\ $$

Commented by MathSh last updated on 30/Dec/20

Thanks sir

$${Thanks}\:{sir} \\ $$

Answered by floor(10²Eta[1]) last updated on 30/Dec/20

General solution to a Diophantine equation.  ax+by=c  let d=gcd(x, y)⇒d∣x, d∣y∴d∣ax+by=c  ax+by has a solution if and only if d∣c.    now suppose (x_0 , y_0 ) is a particular solution,  then,   ax_0 +by_0 =ax+by=c  a(x_0 −x)=b(y−y_0 )  since d=gcd(a, b)⇒a=a′d, b=b′d  where gcd(a′, b′)=1  da′(x_0 −x)=db′(y−y_0 )  a′(x_0 −x)=b′(y−y_0 )  ⇒(I): a′∣b′(y−y_0 )⇒a′∣(y−y_0 )   [because gcd(a′,b′)=1⇒a′∤b′]  ⇒y−y_0 =a′k⇒y=y_0 +a′k  ⇒(II): b′∣a′(x_0 −x)⇒b′∣(x_0 −x)  ⇒x_0 −x=b′k⇒x=x_0 −b′k  so the general solution to a diophantine  equation of the form ax+by=c is  (x, y)=(x_0 −((bk)/d), y_0 +((ak)/d)), k∈Z  where (x_0 , y_0 ) is a particular solution    now that you know this try to solve  your question.

$$\mathrm{General}\:\mathrm{solution}\:\mathrm{to}\:\mathrm{a}\:\mathrm{Diophantine}\:\mathrm{equation}. \\ $$$$\mathrm{ax}+\mathrm{by}=\mathrm{c} \\ $$$$\mathrm{let}\:\mathrm{d}=\mathrm{gcd}\left(\mathrm{x},\:\mathrm{y}\right)\Rightarrow\mathrm{d}\mid\mathrm{x},\:\mathrm{d}\mid\mathrm{y}\therefore\mathrm{d}\mid\mathrm{ax}+\mathrm{by}=\mathrm{c} \\ $$$$\mathrm{ax}+\mathrm{by}\:\mathrm{has}\:\mathrm{a}\:\mathrm{solution}\:\mathrm{if}\:\mathrm{and}\:\mathrm{only}\:\mathrm{if}\:\mathrm{d}\mid\mathrm{c}. \\ $$$$ \\ $$$$\mathrm{now}\:\mathrm{suppose}\:\left(\mathrm{x}_{\mathrm{0}} ,\:\mathrm{y}_{\mathrm{0}} \right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{particular}\:\mathrm{solution}, \\ $$$$\mathrm{then},\: \\ $$$$\mathrm{ax}_{\mathrm{0}} +\mathrm{by}_{\mathrm{0}} =\mathrm{ax}+\mathrm{by}=\mathrm{c} \\ $$$$\mathrm{a}\left(\mathrm{x}_{\mathrm{0}} −\mathrm{x}\right)=\mathrm{b}\left(\mathrm{y}−\mathrm{y}_{\mathrm{0}} \right) \\ $$$$\mathrm{since}\:\mathrm{d}=\mathrm{gcd}\left(\mathrm{a},\:\mathrm{b}\right)\Rightarrow\mathrm{a}=\mathrm{a}'\mathrm{d},\:\mathrm{b}=\mathrm{b}'\mathrm{d} \\ $$$$\mathrm{where}\:\mathrm{gcd}\left(\mathrm{a}',\:\mathrm{b}'\right)=\mathrm{1} \\ $$$$\mathrm{da}'\left(\mathrm{x}_{\mathrm{0}} −\mathrm{x}\right)=\mathrm{db}'\left(\mathrm{y}−\mathrm{y}_{\mathrm{0}} \right) \\ $$$$\mathrm{a}'\left(\mathrm{x}_{\mathrm{0}} −\mathrm{x}\right)=\mathrm{b}'\left(\mathrm{y}−\mathrm{y}_{\mathrm{0}} \right) \\ $$$$\Rightarrow\left(\mathrm{I}\right):\:\mathrm{a}'\mid\mathrm{b}'\left(\mathrm{y}−\mathrm{y}_{\mathrm{0}} \right)\Rightarrow\mathrm{a}'\mid\left(\mathrm{y}−\mathrm{y}_{\mathrm{0}} \right)\: \\ $$$$\left[\mathrm{because}\:\mathrm{gcd}\left(\mathrm{a}',\mathrm{b}'\right)=\mathrm{1}\Rightarrow\mathrm{a}'\nmid\mathrm{b}'\right] \\ $$$$\Rightarrow\mathrm{y}−\mathrm{y}_{\mathrm{0}} =\mathrm{a}'\mathrm{k}\Rightarrow\mathrm{y}=\mathrm{y}_{\mathrm{0}} +\mathrm{a}'\mathrm{k} \\ $$$$\Rightarrow\left(\mathrm{II}\right):\:\mathrm{b}'\mid\mathrm{a}'\left(\mathrm{x}_{\mathrm{0}} −\mathrm{x}\right)\Rightarrow\mathrm{b}'\mid\left(\mathrm{x}_{\mathrm{0}} −\mathrm{x}\right) \\ $$$$\Rightarrow\mathrm{x}_{\mathrm{0}} −\mathrm{x}=\mathrm{b}'\mathrm{k}\Rightarrow\mathrm{x}=\mathrm{x}_{\mathrm{0}} −\mathrm{b}'\mathrm{k} \\ $$$$\mathrm{so}\:\mathrm{the}\:\mathrm{general}\:\mathrm{solution}\:\mathrm{to}\:\mathrm{a}\:\mathrm{diophantine} \\ $$$$\mathrm{equation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{form}\:\mathrm{ax}+\mathrm{by}=\mathrm{c}\:\mathrm{is} \\ $$$$\left(\mathrm{x},\:\mathrm{y}\right)=\left(\mathrm{x}_{\mathrm{0}} −\frac{\mathrm{bk}}{\mathrm{d}},\:\mathrm{y}_{\mathrm{0}} +\frac{\mathrm{ak}}{\mathrm{d}}\right),\:\mathrm{k}\in\mathbb{Z} \\ $$$$\mathrm{where}\:\left(\mathrm{x}_{\mathrm{0}} ,\:\mathrm{y}_{\mathrm{0}} \right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{particular}\:\mathrm{solution} \\ $$$$ \\ $$$$\mathrm{now}\:\mathrm{that}\:\mathrm{you}\:\mathrm{know}\:\mathrm{this}\:\mathrm{try}\:\mathrm{to}\:\mathrm{solve} \\ $$$$\mathrm{your}\:\mathrm{question}. \\ $$$$ \\ $$

Commented by MathSh last updated on 31/Dec/20

Thanks sir

$${Thanks}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com